
專題7.4 復(fù)數(shù)運(yùn)算的綜合應(yīng)用大題專項(xiàng)訓(xùn)練【四大題型】 【人教A版(2019)】 姓名:___________班級(jí):___________考號(hào):___________ 題型一 復(fù)數(shù)的四則運(yùn)算 1.(2023下·河北邢臺(tái)·高一統(tǒng)考期末)已知復(fù)數(shù)z滿足z+2i=5,z=a+3?aia>0. (1)求a; (2)若復(fù)數(shù)z1滿足z1z1+2=a+2i,求z1. 【解題思路】(1)根據(jù)復(fù)數(shù)的模長(zhǎng)公式即可求解. (2)根據(jù)復(fù)數(shù)相等的充要條件,即可列方程組求解. 【解答過(guò)程】(1)由題意得z=a+a?3i, z+2i=a+a?1i 所以a2+a?12=25?a=4或a=?3(舍去), 故a=4 (2)設(shè)z1=x+yix,y∈R, 則z1z1=x2+y2,x2+y2+2x+yi=4+2i 所以x2+y2+2x=4,2y=2,解得x=1,y=1或x=?3,y=1, 所以z1=1+i或?3+i. 2.(2023·高一課時(shí)練習(xí))計(jì)算: (1)1+2i+7?11i?5+6i; (2)5i?6+8i??1+3i; (3)a+bi?2a?3bi?3ia,b∈R. 【解題思路】根據(jù)復(fù)數(shù)的加減運(yùn)算法則即可求解 【解答過(guò)程】(1)1+2i+7?11i?5+6i=1+7?5+2?11?6i=3?15i; (2)5i?6+8i??1+3i=5i?7+5i=?7; (3)a+bi?2a?3bi?3i=a?2a+b??3b?3i=?a+4b?3ia,b∈R. 3.(2023·高一課時(shí)練習(xí))設(shè)f(z)=z?2i,z1=3+4i,z2=?2?i, 求:(1)f(z1?z2)的值; (2)f(z1+z2)的值. 【解題思路】直接利用復(fù)數(shù)的加法,結(jié)合函數(shù)的解析式,求解即可. 【解答過(guò)程】z1=3+4i,z2=?2?i,則z1?z2=5+5i,z1+z2=1+3i. ∵f(z)=z?2i, ∴(1)f(z1?z2)=z1?z2?2i=5+5i?2i=5+3i, (2)f(z1+z2)=z1+z2?2i=1+3i?2i=1+i. 4.(2023·高一課時(shí)練習(xí))已知復(fù)數(shù)a1+b1i,a2+b2i,a3+b3ia1,a2,a3,b1,b2,b3∈R,分別記作z1,z2,z3,即z1=a1+b1i,z2=a2+b2i,z3=a3+b3i,求證: (1)z1z2=z2z1; (2)z1z2z3=z1z2z3; (3)z1z2+z3=z1z2+z1z3. 【解題思路】利用復(fù)數(shù)四則運(yùn)算規(guī)則即可證明(1)(2)(3) 【解答過(guò)程】(1)z1z2=a1+b1ia2+b2i=a1a2?b1b2+(a1b2+a2b1)i, z2z1=a2+b2ia1+b1i=a1a2?b1b2+(a1b2+a2b1)i, 則z1z2=z2z1. (2)z1z2z3=a1+b1ia2+b2ia3+b3i=a1a2?b1b2+(a1b2+a2b1)ia3+b3i =a1a2?b1b2a3?(a1b2+a2b1)b3+b3a1a2?b1b2+a3(a1b2+a2b1)i, z1z2z3=a1+b1ia2+b2ia3+b3i=a1+b1ia2a3?b2b3+(a3b2+a2b3)i =a1a2a3?b2b3?b1(a3b2+a2b3)+a1(a3b2+a2b3)+b1a2a3?b2b3i =a1a2?b1b2a3?(a1b2+a2b1)b3+b3a1a2?b1b2+a3(a1b2+a2b1)i, 則z1z2z3=z1z2z3. (3)z1z2+z3=a1+b1ia2+a3+b2+b3i =a1a2+a3?b1b2+b3+a1b2+b3+b1a2+a3i, z1z2+z1z3=a1+b1ia2+b2i+a1+b1ia3+b3i =a1a2?b1b2+(a1b2+a2b1)i+a1a3?b1b3+(a1b3+a3b1)i =a1a2?b1b2+a1a3?b1b3+(a1b2+a2b1)+(a1b3+a3b1)i =a1a2+a3?b1b2+b3+a1b2+b3+b1a2+a3i, 則z1z2+z3=z1z2+z1z3. 5.(2023·全國(guó)·高一專題練習(xí))已知復(fù)數(shù)z1=cosα+isinα,z2=cosβ?isinβ,α,β均為銳角,且z1?z2=255. (1)求cosα+β的值; (2)若cosα=45,求cosβ的值. 【解題思路】(1)先求出z1?z2=cosα?cosβ+isinα+sinβ,利用z1?z2=255即可求出cosα+β的值;(2)利用平方關(guān)系求出sinα+β=45,sinα=35,再利用和差角公式即可求得. 【解答過(guò)程】(1)因?yàn)閺?fù)數(shù)z1=cosα+isinα,z2=cosβ?isinβ,所以z1?z2=cosα?cosβ+isinα+sinβ. 所以z1?z2=cosα?cosβ2+sinα+sinβ2 =2?2cosαcosβ?sinαsinβ =2?2cosα+β 因?yàn)閦1?z2=255,所以2?2cosα+β=255,解得:cosα+β=35. (2)因?yàn)棣?β均為銳角,所以0
微信掃碼,快速注冊(cè)
注冊(cè)成功