
當 時,
且 是 的 倍;
,且 .
思考:若向量a與e1或e2共線,a還能用λ1e1+λ2e2表示嗎?
思考:當 是零向量時, 還可以表示成 的形式嗎?
思考:設 是同一平面內兩個不共線的向量,在 中 , 是否唯一?
假設 ,
則 ,
即 ,
所以 ,
所以 唯一 ,
平面向量基本定理
把不共線的向量 叫做表示這一平面內所有向量的一組基底。
(1).基底的選擇是不唯一的;(2).同一向量在選定基底后,
(3).同一向量在選擇不同基底時, 可能相同也可能不同。
思考:觀察 ,你有什么發(fā)現(xiàn)?
結論:若 三點共線,點 是平面內任意一點,若 ,則 。
例2.如圖,CD是 的中線, ,用向量方法證明 是直角三角形。
于是 是直角三角形。
2.平面向量基本定理是建立在向量加法和數(shù)乘運算基礎上的向量分解原理,同時又是向量坐標表示的理論依據(jù),是一個承前起后的重要知識點。
這是一份高中數(shù)學人教A版 (2019)必修 第二冊6.3 平面向量基本定理及坐標表示教學課件ppt,文件包含專題一近代中國人民的反侵略斗爭同步練習教師版2023-2024部編版歷史八年級上冊docx、專題一近代中國人民的反侵略斗爭同步練習學生版2023-2024部編版歷史八年級上冊docx等2份試卷配套教學資源,其中試卷共19頁, 歡迎下載使用。
這是一份人教A版 (2019)必修 第二冊第六章 平面向量及其應用6.3 平面向量基本定理及坐標表示獲獎課件ppt,共60頁。
這是一份高中數(shù)學人教A版 (2019)必修 第二冊第六章 平面向量及其應用6.3 平面向量基本定理及坐標表示精品ppt課件,共60頁。
注冊成功