
1.能熟練運用觀察法、疊合法、度量法精準比較線段長短.2.理解并準確表述線段和差的概念,會依據(jù)圖形與條件進行線段和差計算,能繪制符合要求的線段和差圖形.3.能夠理解 “兩點之間,線段最短” 的基本事實,能用嚴謹?shù)臄?shù)學語言進行表述.
【畫一畫】在練習本上用尺子畫一條”線段“、”射線“和”直線“.
思考:在線段、射線和直線中,哪一種是可以度量的?
只有線段有兩個端點,它是有長度的,可以度量。
說一說:怎樣比較圖中的線段AB,CD的長短呢?
方法一:目測法. 適用于線段差別較大時,用觀察和估測就可以比較長短.
如果線段的長短比較接近怎么辦?
方法二:度量法. 先用一把刻度尺分別量出兩條線段的長度,再進行比較.
方法三:疊合法. 先把兩條線段的一端重合,另一端落在同側(cè),再根據(jù)另一端落下的位置來比較.
像上圖這樣,對任意兩條線段 AB 與 CD,將線段 AB 移到 CD 上,使點A與點C重合,點B與點D都在點C的同側(cè)。
這時可能出現(xiàn)的情形如下表:
如圖,點 C 落在線段 AB 的延長線(即以 B 為端點,方向為 A到 B的射線)上,則線段 AC是線段 AB與線段BC的和,記作 AC = AB + BC,線段 BC是線段 AC與線段AB的差,記作BC = AC - AB.
想一想:AB等于什么?
AB = AC - BC
議一議:杭州灣跨海大橋是跨越杭州灣的便捷通道 . 大橋北起嘉興市,跨越寬闊的杭州灣海域后止于寧波市,全長 36 km. 大橋建成后寧波至上海的陸路距離縮短了約120 km. 這是什么原理?
根據(jù)長期實踐經(jīng)驗可以得到關(guān)于線段的基本事實:兩點之間的所有連線中,線段最短.
簡單說成:兩點之間,線段最短.
連接兩點的線段的長度,叫作這兩點的距離 .
【例1】如圖,已知線段 a,借助圓規(guī)和直尺作一條線段使它等于2a.
作法 :(1) 作射線AD;
(2) 在AD上順次截取AB = BC = a.
則線段AC就是所求作的線段.
像這樣僅用圓規(guī)和沒有刻度的直尺作圖的方法叫尺規(guī)作圖.
若點 B 在線段 AC 上,且把線段 AC 分成相等的兩條線段 AB 與 BC,這時B叫作線段 AC 的中點 .
類似地,還有線段的三等分點、四等分點等.
【例2】如圖,已知線段 a,b(a > b),作一條線段使它等于a - b.
作法 (1) 作射線AF;(2) 在射線AF上截取AC = a;(3) 在線段AC上截取AB = b.
則線段BC就是所求作的線段
【知識技能類作業(yè)】必做題:
1.如圖,把原來彎曲的河道改直,A,B兩地間的河道長度變短,這樣做的道理是( ).A.兩點確定一條直線B.兩點之間線段最短C.兩點之間直線最短D.線段是直線的一部分
2.若A,B,C在同一條直線上,線段AB=6 cm,BC=2 cm,則A,C兩點間的距離是( ).A.8 cmB.2 cmC.8cm或4cmD.4cm或2cm
3.如圖,比較線段AC和AB的長短,科學的方法有( )①沿點A折疊,使AB和AC重合,觀察點B的位置;②用直尺度量出AB和AC的長度;③用圓規(guī)將線段AB疊放到線段AC上,觀察點B的位置;④憑感覺估計.A.1個 B.2個C.3個 D.4個
4.如圖,點C,D在線段AB上,點C為AB的中點.若AC=5 cm,BD =2 cm,則CD 的長為( ).A.2 cm B.3 cm C.5 cm D.7 cm
【知識技能類作業(yè)】選做題:
5.如圖,AC>BD,比較線段AB與線段CD的大小( )>CDC.AB
這是一份數(shù)學七年級上冊(2024)4.3 角精品教學ppt課件,文件包含4322余角和補角課件pptx、4322余角和補角教學設計docx、第4章圖形的認識大單元教學設計docx等3份課件配套教學資源,其中PPT共30頁, 歡迎下載使用。
這是一份浙教版(2024)八年級下冊3.3 方差和標準差完整版教學課件ppt,共30頁。PPT課件主要包含了教學目標,情境導入,探究新知,課堂練習,課堂總結(jié),作業(yè)布置,知識技能類作業(yè),必做題,選做題,綜合實踐類作業(yè)等內(nèi)容,歡迎下載使用。
這是一份湘教版(2024)七年級上冊(2024)3.2 等式的基本性質(zhì)教學課件ppt,文件包含323去括號和去分母課件pptx、323去括號和去分母教學設計docx、第3章一次方程組大單元教學設計docx等3份課件配套教學資源,其中PPT共29頁, 歡迎下載使用。
注冊成功