
熟練掌握等差、等比數(shù)列的前n項和公式.
掌握數(shù)列求和的常用方法.
(3)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么求這個數(shù)列的前n項和可用錯位相減法求解.(4)倒序相加法:如果一個數(shù)列滿足與首末兩端等“距離”的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和可用倒序相加法求解.(5)并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如an=(-1)nf (n)的數(shù)列求和,可采用兩項合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.提醒:無論用哪一種方法求和,最后可以用S1,S2進(jìn)行驗(yàn)證.
2.(人教A版選擇性必修第二冊P51練習(xí)T1改編)數(shù)列{an}的通項公式為an=(-1)n(2n-1),則該數(shù)列的前100項和為( )A.-200 B.-100 C.200 D.100D [S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.]
3.(人教A版選擇性必修第二冊P40習(xí)題4.3T3(1)改編)若數(shù)列{an}的通項公式為an=2n+2n-1,則數(shù)列{an}的前n項和為( )A.2n+n2-1 B.2n+1+n2-1C.2n+1+n2-2 D.2n+n-2
4.(人教A版選擇性必修第二冊P40習(xí)題4.3T3(2)改編)1+2a+3a2+…+nan-1=______________________.
考點(diǎn)一 分組求和與并項求和考向1 分組求和[典例1] 在數(shù)列{an}中,a1=-1,an=2an-1+3n-6(n≥2,n∈N*).(1)求證:數(shù)列{an+3n}為等比數(shù)列,并求數(shù)列{an}的通項公式;(2)設(shè)bn=an+n,求數(shù)列{bn}的前n項和Tn.
考向2 并項求和[典例2] 已知等差數(shù)列{an}的前n項和為Sn,a5=9,S5=25.(1)求數(shù)列{an}的通項公式及Sn;(2)設(shè)bn=(-1)nSn,求數(shù)列{bn}的前n項和Tn.
名師點(diǎn)評 裂項相消法求和的基本步驟
名師點(diǎn)評 錯位相減法求和的具體步驟
【教師備選資源】1.(2020·全國Ⅰ卷)設(shè){an}是公比不為1的等比數(shù)列,a1為a2,a3的等差中項.(1)求{an}的公比;(2)若a1=1,求數(shù)列{nan}的前n項和.
鞏固課堂所學(xué) · 激發(fā)學(xué)習(xí)思維夯實(shí)基礎(chǔ)知識 · 熟悉命題方式自我檢測提能 · 及時矯正不足
本節(jié)課掌握了哪些考點(diǎn)?本節(jié)課還有什么疑問點(diǎn)?
課時分層作業(yè)(三十九)
這是一份新高考數(shù)學(xué)一輪復(fù)習(xí)課件第4章數(shù)列第4講 數(shù)列求和(含解析),共43頁。PPT課件主要包含了2裂項相消法,3錯位相減法,4倒序相加法,名師點(diǎn)睛,題組一走出誤區(qū),答案BCD,答案A,題組三真題展現(xiàn),答案4,變式訓(xùn)練等內(nèi)容,歡迎下載使用。
這是一份2025版高考數(shù)學(xué)一輪總復(fù)習(xí)第6章數(shù)列第4講數(shù)列求和課件,共60頁。PPT課件主要包含了題組二走進(jìn)教材,①-②得,an=2n+1,題組三走向高考,變式訓(xùn)練,故選A,①+②得等內(nèi)容,歡迎下載使用。
這是一份高考數(shù)學(xué)一輪總復(fù)習(xí)課件第4章數(shù)列第4講數(shù)列求和(含解析),共43頁。PPT課件主要包含了2裂項相消法,3錯位相減法,4倒序相加法,名師點(diǎn)睛,題組一走出誤區(qū),答案BCD,答案A,題組三真題展現(xiàn),答案4,變式訓(xùn)練等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊
注冊成功