
1、理解正切的定義,能根據(jù)已知直角三角形的邊長求一個銳角的正切值.2、了解銳角A的三角函數(shù)的定義,能運用銳角三角函數(shù)的定義求三角函數(shù)值.
重點:正切的定義.難點:已知直角三角形的邊長求一個銳角的余弦值和正切值.
回顧相似三角形的性質:
相似三角形對應邊上的高、中線、角平分線、周長的比等于相似比;相似三角形面積的比等于相似比的平方
在Rt△ABC中,∠C=90°銳角正弦的定義
如圖,在Rt△ABC中,∠C=90°我們把銳角A的鄰邊與對邊的比叫做∠A的正切,記作tanA,即
例1 如圖,在 Rt△ABC 中,∠C =90°,AB=10,BC=6,求sin A, cs A,tan A的值.
已知直角三角形的任意兩邊長求某個銳角的三角函數(shù)值時,運用數(shù)形結合思想,首先畫出符合題意的直角三角形,然后根據(jù)勾股定理求出未知邊長,最后結合銳角三角函數(shù)的定義求三角函數(shù)值.
分別求出下列直角三角形中兩個銳角的正弦值、余弦值和正切值.
銳角A的正弦、余弦、和正切統(tǒng)稱∠A的銳角三角函數(shù).
腦中有“圖”,心中有“式”
如圖,在 Rt△ABC 中,∠C=90°,AB=10,BC=6,求sinA,csA,tanA的值.
已知直角三角形兩邊求銳角三角函數(shù)的值
已知直角三角形中的兩條邊求銳角三角函數(shù)值的一般思路是:當所涉及的邊是已知時,直接利用定義求銳角三角函數(shù)值;當所涉及的邊是未知時,可考慮運用勾股定理的知識求得邊的長度,然后根據(jù)定義求銳角三角函數(shù)值.
1. 如圖,旗桿高AB=8m,某一時刻,旗桿影子長BC=16m,則tanC=______.
∠A的對邊與鄰邊的比叫做∠A 的正切,記作tan A, 即tan A=
這是一份人教版九年級下冊28.1 銳角三角函數(shù)完美版ppt課件,共25頁。PPT課件主要包含了學習目標,復習回顧,知識精講,針對練習,總結提升,典例解析,達標檢測等內容,歡迎下載使用。
這是一份初中數(shù)學人教版九年級下冊28.1 銳角三角函數(shù)優(yōu)秀課件ppt,文件包含精品原創(chuàng)人教版數(shù)學九年級下冊2812《正切函數(shù)》課件pptx、精品原創(chuàng)人教版數(shù)學九年級下冊2812《正切函數(shù)》教案docx、精品原創(chuàng)人教版數(shù)學九年級下冊2812《正切函數(shù)》分層練習docx、精品原創(chuàng)人教版數(shù)學九年級下冊2812《正切函數(shù)》預習案docx等4份課件配套教學資源,其中PPT共24頁, 歡迎下載使用。
這是一份初中數(shù)學人教版九年級下冊28.1 銳角三角函數(shù)精品課件ppt,文件包含2812《余弦和正切》第2課時課件pptx、2812《余弦和正切》第2課時導學案doc、2812《余弦和正切》第2課時教案doc等3份課件配套教學資源,其中PPT共23頁, 歡迎下載使用。
注冊成功