
1.理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.
2.復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0) 的求根公式的推導(dǎo)公式,并應(yīng)用公式法解一元二次方程.
重難點(diǎn)
重點(diǎn):求根公式的推導(dǎo)和公式法的應(yīng)用.
難點(diǎn):一元二次方程求根公式法的推導(dǎo).
【預(yù)習(xí)內(nèi)容】(閱讀教材,并完成預(yù)習(xí)內(nèi)容。)
1、用配方法解下列方程
(1)6x2-7x+1=0 (2)4x2-3x=52
總結(jié)用配方法解一元二次方程的步驟:
2、如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根?
問題:已知ax2+bx+c=0(a≠0)試推導(dǎo)它的兩個(gè)根x1= x2=
分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ)、b、c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.
解:移項(xiàng),得: ,二次項(xiàng)系數(shù)化為1,得
配方,得: 即
∵a≠0,∴4a2>0,式子b2-4ac的值有以下三種情況:
b2-4ac>0,則>0
直接開平方,得: 即x=
∴x1= ,x2=
b2-4ac=0,則=0此時(shí)方程的根為 即一元二次程
ax2+bx+c=0(a≠0)有兩個(gè) 的實(shí)根。
b2-4ac<0,則<0,此時(shí)(x+)2 <0,而x取任何實(shí)數(shù)都不
能使(x+)2 <0,因此方程 實(shí)數(shù)根。
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此:
(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a、b、c代入式子x=就得到方程的根,當(dāng)b2-4ac<0,方程沒有實(shí)數(shù)根。
(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有 實(shí)數(shù)根,也可能有 實(shí)根或者 實(shí)根。
(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判別式,通常用希臘字Δ表示它,即Δ= b2-4ac
用公式法解下列方程.
(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0
【課堂活動(dòng)】
活動(dòng)1、預(yù)習(xí)反饋
活動(dòng)2、例習(xí)題分析
例2、用公式法解下列方程.
(1)x2-4x-7=0 (2)2x2-x+1=0 (3)5x2-3x=x+1 (4)x2+17=8x
練習(xí):
1、在什么情況下,一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根?有兩個(gè)相等的實(shí)數(shù)根?
2、寫出一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的求根公式。
3、方程x2-4x+4=0的根的情況是( )
A有兩個(gè)不相等的實(shí)數(shù)根 B有兩個(gè)相等的實(shí)數(shù)根 C有一個(gè)實(shí)數(shù)根 D沒有實(shí)數(shù)根
4、用公式法解下列方程.
(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0
(5)x2+x-6=0 (6)x2-x-=0 (7)3x2-6x-2=0
(8)4x2-6=0 (9)x2+4x+8=4x+11 (10) x(2x-4)=5-8x
【課堂練習(xí)】:
活動(dòng)3、知識(shí)運(yùn)用
1、利用判別式判定下列方程的根的情況:
(1)2x2-3x-=0 (2)16x2-24x+9=0 (3)x2-x+9=0 (4)3x2+10x=2x2+8x
2、用公式法解下列方程.
(1)x2+x-12=0 (2)x2-x-=0 (3)x2+4x+8=2x+11
(4)x(x-4)=2-8x (5)x2+2x=0 (6) x2+x+10=0
歸納小結(jié)
本節(jié)課應(yīng)掌握:
(1)求根公式的概念及其推導(dǎo)過程; (2)公式法的概念;
(3)應(yīng)用公式法解一元二次方程; (4)初步了解一元二次方程根的情況.
【課后鞏固】
一、選擇題
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x= C.x= D.x=
2.方程x2+4x+6=0的根是( ).
A.x1=,x2= B.x1=6,x2= C.x1=2,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,則m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
二、填空題
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.
2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.
3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.
三、綜合提高題
1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.
2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,
(1)試推導(dǎo)x1+x2=-,x1·x2=;
(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3、 某數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1)+(m-2)x-1=0提出了下列問題.
(1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程為一元二次方程m是否存在?若存在,請(qǐng)求出.
你能解決這個(gè)問題嗎?
這是一份初中數(shù)學(xué)人教版九年級(jí)上冊(cè)21.2.3 因式分解法學(xué)案設(shè)計(jì),共4頁。學(xué)案主要包含了學(xué)習(xí)內(nèi)容,學(xué)習(xí)目標(biāo),學(xué)習(xí)重難點(diǎn),學(xué)習(xí)過程,達(dá)標(biāo)檢測(cè)等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學(xué)人教版九年級(jí)上冊(cè)21.2.3 因式分解法學(xué)案,共4頁。學(xué)案主要包含了課時(shí)安排,第一課時(shí),學(xué)習(xí)目標(biāo),學(xué)習(xí)重難點(diǎn),學(xué)習(xí)流程,學(xué)習(xí)小結(jié),達(dá)標(biāo)檢測(cè)等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學(xué)人教版九年級(jí)上冊(cè)21.2.3 因式分解法學(xué)案,共3頁。學(xué)案主要包含了學(xué)習(xí)目標(biāo),學(xué)習(xí)重點(diǎn),學(xué)習(xí)難點(diǎn),學(xué)習(xí)過程等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功