回歸定義,以逸待勞
回歸定義的實質(zhì)是重新審視概念,并用相應(yīng)的概念解決問題,是一種樸素而又重要的策略和思想方法.圓錐曲線的定義既是有關(guān)圓錐曲線問題的出發(fā)點,又是新知識、新思維的生長點.對于相關(guān)的圓錐曲線中的數(shù)學(xué)問題,若能根據(jù)已知條件,巧妙靈活應(yīng)用定義,往往能達(dá)到化難為易、化繁為簡、事半功倍的效果.
[典例] 如圖,F(xiàn)1,F(xiàn)2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形,則C2的離心率是( )
A. B.
C. D.
[解題觀摩] 由已知,得F1(-,0),F(xiàn)2(,0),
設(shè)雙曲線C2的實半軸長為a,
由橢圓及雙曲線的定義和已知,
可得解得a2=2,
故a=.所以雙曲線C2的離心率e==.
[答案] D
本題巧妙運用橢圓和雙曲線的定義建立|AF1|,|AF2|的等量關(guān)系,從而快速求出雙曲線實半軸長a的值,進而求出雙曲線的離心率,大大降低了運算量.
[對點訓(xùn)練]
1.如圖,設(shè)拋物線y2=4x的焦點為F,不經(jīng)過焦點的直線上有三個不同的點A,B,C,其中點A,B在拋物線上,點C在y軸上,則△BCF與△ACF的面積之比是( )
A. B.
C. D.
解析:選A 由題意可得====.
2.拋物線y2=4mx(m>0)的焦點為F,點P為該拋物線上的動點,若點A(-m,0),則的最小值為________.
解析:設(shè)點P的坐標(biāo)為(xP,yP),由拋物線的定義,知|PF|=xP+m,又|PA|2=(xP+m)2+y=(xP+m)2+4mxP,則2==≥=(當(dāng)且僅當(dāng)xP=m時取等號),所以≥,所以的最小值為.
答案: