【例1】如圖,把兩個(gè)含角的兩個(gè)直角三角板按如圖所示拼接在一起,點(diǎn)是邊的中點(diǎn),連接交于點(diǎn),則的值為
A.B.C.D.
【例2】如圖,在中,點(diǎn)、分別在邊、上,,,如果,,那么的值是 .
【例3】如圖,,與交于點(diǎn),過點(diǎn)作,分別交,于點(diǎn),,則下列結(jié)論錯(cuò)誤的是
A.B.C.D.
【例4】已知,如圖,為中線上一點(diǎn),,延長、分別交、于點(diǎn)、,交于點(diǎn).
(1);
(2);
(3);
(4).
上述結(jié)論中,正確的有 .
【例5】如圖,中邊,高,正方形的四個(gè)頂點(diǎn)分別為三邊上的點(diǎn)(點(diǎn),為上的點(diǎn),點(diǎn)為上的點(diǎn),點(diǎn)為上的點(diǎn)),則正方形的邊長為 .
【例6】如圖,已知在中,,高,內(nèi)接矩形的頂點(diǎn)、在邊上,、分別在、上,則內(nèi)接矩形的最大面積為 .
【例7】如圖,中,是中點(diǎn),是的平分線,交 于.若,,則的長為 .
題型 2 半角模型
【例8】已知,如圖1,四邊形是正方形,、分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.
(1)在圖1中,連接,為了證明結(jié)論“”,小明將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問題,請(qǐng)按小明的思路寫出證明過程;
(2)如圖2,當(dāng)?shù)膬蛇叿謩e與、的延長線交于點(diǎn)、,連接,試探究線段、、之間的數(shù)量關(guān)系,并證明.
【例9】當(dāng)幾何圖形中,兩個(gè)共頂點(diǎn)的角存在角度是公共大角一半的關(guān)系,我們稱之為“半角模型”.
(1)如圖1,在正方形中,、分別是、邊上的點(diǎn),且,探究圖中線段,,之間的數(shù)量關(guān)系.
(2)如圖2,如果四邊形中,,,,且,,,求的長.
(3)如圖3,在四邊形中,,與互補(bǔ),點(diǎn)、分別在射線、上,且.當(dāng),,時(shí),的周長等于 .
(4)如圖4,邊長為6的正方形中,的頂點(diǎn)、分別在、邊上,且,連接分別交、于點(diǎn),,若,求的長.
題型 3 四邊形綜合
【例10】在四邊形中,,,,為上一點(diǎn),,且,的延長線于.連接交對(duì)角線于.下列結(jié)論:①;②垂直平分;③;④平分.其中結(jié)論正確的是 .(填序號(hào))
【例11】如圖,在矩形中,,的平分線交于點(diǎn),于點(diǎn),連接并延長交于點(diǎn),連接交于點(diǎn),下列結(jié)論:①;②;③;④,其中正確的有 .(把正確結(jié)論的序號(hào)都填上)
【例12】在直角梯形中,,,,為邊上一點(diǎn),,且,連接交對(duì)角線于,連接,下列結(jié)論:
①;②;③;④
其中結(jié)論正確的是
【例13】如圖,已知正方形,延長至點(diǎn)使,連接、,與交于點(diǎn),取的中點(diǎn),連接,,交于點(diǎn),交于點(diǎn),則下列結(jié)論:
①;②;③;④;⑤.
其中正確的是 (只填序號(hào))
【例14】如圖,平面直角坐標(biāo)系中是原點(diǎn),的頂點(diǎn),的坐標(biāo)分別是,,點(diǎn),把線段三等分,延長、分別交、于點(diǎn),,連接.則下列結(jié)論:
①是的中點(diǎn);②與相似;③四邊形的面積是;④
其中正確的結(jié)論是 (填寫所有正確結(jié)論的序號(hào)).
【例15】如圖,在正方形中,,是邊上一點(diǎn),連接,將沿直線翻折,得到,延長交于,連接,對(duì)角線分別與、交于、,連接、,下列結(jié)論:①;②;③;④若,則,其中,正確的有 (填序號(hào)).
【例16】如圖,在正方形中,、是射線上一動(dòng)點(diǎn),且,射線、分別交、延長線于、,連接;在下列結(jié)論中①;②;③;④;⑤若,則;⑥.其中一定正確的是 .(把正確的序號(hào)寫在橫線上)
【例17】如圖,在正方形中,對(duì)角線,相交于點(diǎn),點(diǎn)在邊上,且,連接交于點(diǎn),過點(diǎn)作,連接并延長,交于點(diǎn),過點(diǎn)作分別交、于點(diǎn)、,交的延長線于點(diǎn),現(xiàn)給出下列結(jié)論:①;②;③;④.其中正確的結(jié)論有 (填入正確的序號(hào)).
【例18】如圖,在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),與交于點(diǎn),,,垂足分別為,,連接,,.下列結(jié)論:①;②;③;④;⑤;⑥.其中結(jié)論正確的序號(hào)是 .
2025年中考數(shù)學(xué)考前沖刺:三角形、四邊形綜合 強(qiáng)化練習(xí)題·教師版
1.如圖,把兩個(gè)含角的兩個(gè)直角三角板按如圖所示拼接在一起,點(diǎn)是邊的中點(diǎn),連接交于點(diǎn),則的值為
A.B.C.D.
【解答】解:連接,如圖,
設(shè),
,,
,,
點(diǎn)是邊的中點(diǎn),

,,
,

,
,
,

,
,
,
,
,
故選:.
2.如圖,在中,點(diǎn)、分別在邊、上,,,如果,,那么的值是 .
【解答】解:,,
,
,



,
,


故答案為:.
3.如圖,,與交于點(diǎn),過點(diǎn)作,分別交,于點(diǎn),,則下列結(jié)論錯(cuò)誤的是
A.B.C.D.
【解答】解:,,

,故選項(xiàng)正確,不符合題意;
,
,,
①,②,
①②得,
,

,
,,
,

,故,選項(xiàng)正確,不符合題意;
,

,
,
,
,
,
,
,
,

.故選項(xiàng)錯(cuò)誤,符合題意.
故選:.
4.已知,如圖,為中線上一點(diǎn),,延長、分別交、于點(diǎn)、,交于點(diǎn).
(1);
(2);
(3);
(4).
上述結(jié)論中,正確的有 (3)(4) .
【解答】解:延長到,使,連接、,
是中線,
,
四邊形是平行四邊形,
,,
即,,
,,
,
;
,,

,而與不一定相等,故(1)錯(cuò)誤;
,,
,,
,故(2)錯(cuò)誤;
,
,
;故(3)正確;
,
,,
.故(4)正確.
故答案為:(3)(4).
5.如圖,中邊,高,正方形的四個(gè)頂點(diǎn)分別為三邊上的點(diǎn)(點(diǎn),為上的點(diǎn),點(diǎn)為上的點(diǎn),點(diǎn)為上的點(diǎn)),則正方形的邊長為 .
【解答】解:設(shè)正方形的邊長為,設(shè)與交于點(diǎn),如圖,
四邊形為正方形,
,,
,,
,

,
,
,

解得:.
正方形的邊長為.
故答案為:.
6.如圖,已知在中,,高,內(nèi)接矩形的頂點(diǎn)、在邊上,、分別在、上,則內(nèi)接矩形的最大面積為 80 .
【解答】解:四邊形為矩形,
,.
,
,
設(shè),則.
,

,
,

矩形的面積


當(dāng)時(shí),內(nèi)接矩形的最大面積為80.
故答案為:80.
7.如圖,中,是中點(diǎn),是的平分線,交于.若,,則的長為 13 .
【解答】解:過點(diǎn)作交的延長線于點(diǎn),如圖所示,
,是的平分線,
,

是中點(diǎn),,
為的中位線,

故答案為:13.
8.已知,如圖1,四邊形是正方形,、分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.
(1)在圖1中,連接,為了證明結(jié)論“”,小明將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問題,請(qǐng)按小明的思路寫出證明過程;
(2)如圖2,當(dāng)?shù)膬蛇叿謩e與、的延長線交于點(diǎn)、,連接,試探究線段、、之間的數(shù)量關(guān)系,并證明.
【解答】(1)證明:
由旋轉(zhuǎn)可得,,,
四邊形為正方形,
,

,
,
在和中

,
,

(2)解:,
證明如下:
如圖,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,交于點(diǎn),
同(1)可證得,
,且,

9.已知,如圖1,四邊形是正方形,、分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.
(1)在圖1中,連接,為了證明結(jié)論“”,小明將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問題,請(qǐng)按小明的思路寫出證明過程;
(2)如圖2,當(dāng)?shù)膬蛇叿謩e與、的延長線交于點(diǎn)、,連接,試探究線段、、之間的數(shù)量關(guān)系,并證明.
【解答】(1)證明:
由旋轉(zhuǎn)可得,,,
四邊形為正方形,

,
,

在和中
,
,
,

(2)解:,
證明如下:
如圖,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,交于點(diǎn),
同(1)可證得,
,且,

10.在四邊形中,,,,為上一點(diǎn),,且,的延長線于.連接交對(duì)角線于.下列結(jié)論:①;②垂直平分;③;④平分.其中結(jié)論正確的是 ①②③④ .(填序號(hào))
【解答】解:①,,

,


在和中,
,
.故①正確;
②,

又,
是的垂直平分線.
即垂直平分.故②正確;
③取的中點(diǎn),連接,
,,

,

,

,


,
即,故③正確.
④,
,
,


,
平分;故④正確;
結(jié)論正確的是:①②③④.
故答案為:①②③④.
11.如圖,在矩形中,,的平分線交于點(diǎn),于點(diǎn),連接并延長交于點(diǎn),連接交于點(diǎn),下列結(jié)論:①;②;③;④,其中正確的有 ①②③ .(把正確結(jié)論的序號(hào)都填上)
【解答】解:四邊形是矩形,
,,,
設(shè),則,
平分,
,
是等腰直角三角形,
,

,故①正確;
,,,
是等腰直角三角形,
,
,
,,
平分,
,故②正確;
③,
,

,
又,
,
是等腰直角三角形,
,,

是等腰直角三角形,
,
,
在和中,
,
,
,故③正確;
,
,,
,
,
,故④錯(cuò)誤;
綜上所述,正確的是①②③.
故答案為:①②③.
12.在直角梯形中,,,,為邊上一點(diǎn),,且,連接交對(duì)角線于,連接,下列結(jié)論:
①;②;③;④
其中結(jié)論正確的是 ①②④
【解答】解:①,,
,
又,

又,,
;故①正確;
②同理,
,
,

,
為等邊三角形,設(shè),則,,,

,
,故②正確,
③由②可知,,
,
,故③錯(cuò)誤,
④由②③可知;
,

,
,故④正確;
故答案為:①②④.
13.如圖,已知正方形,延長至點(diǎn)使,連接、,與交于點(diǎn),取的中點(diǎn),連接,,交于點(diǎn),交于點(diǎn),則下列結(jié)論:
①;②;③;④;⑤.
其中正確的是 ①③④⑤ (只填序號(hào))
【解答】解:四邊形為正方形,,
,,
,
,
,,故①正確;
如圖,連接,
,,
,
,,
,故②錯(cuò)誤;
,,是的中點(diǎn),
,,,,
,,
,

,
,
,
如圖,作于,則,
,

,故④正確;

,
,
,
是的中點(diǎn),
,
,故⑤正確;
,
設(shè),,
,
,
,
,故③正確;
故答案為:①③④⑤.
14.如圖,平面直角坐標(biāo)系中是原點(diǎn),的頂點(diǎn),的坐標(biāo)分別是,,點(diǎn),把線段三等分,延長、分別交、于點(diǎn),,連接.則下列結(jié)論:
①是的中點(diǎn);②與相似;③四邊形的面積是;④
其中正確的結(jié)論是 ①③ (填寫所有正確結(jié)論的序號(hào)).
【解答】解:①四邊形是平行四邊形,
,,
,

、為的三等分點(diǎn),
,
,
,

是的中點(diǎn);
所以①結(jié)論正確;
②如圖2,延長交軸于,
由知:,,
,
,

,
,

不成立,
,且與相交,

不成立,
同理可知為的中點(diǎn),即,
由勾股定理得:,
,
,
,
所以②結(jié)論不正確;
③由①知:為的中點(diǎn),
由②知:是的中點(diǎn),
是的中位線,
,,
,
,
,
過作于,
,
,

,

,
,
,
,
,

,
;
所以③結(jié)論正確;
④在中,由勾股定理得:,
,

所以④結(jié)論不正確;
故本題結(jié)論正確的有:①③;
故答案為:①③.
15.如圖,在正方形中,,是邊上一點(diǎn),連接,將沿直線翻折,得到,延長交于,連接,對(duì)角線分別與、交于、,連接、,下列結(jié)論:①;②;③;④若,則,其中,正確的有 ①②③ (填序號(hào)).
【解答】解:四邊形是正方形,
,,,
將沿直線翻折,得到,
,,,,
,,
又,
,
,,
,故①正確;
,
,
,
如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,連接,
,,,,
,,
,
又,

,
,
;故②正確;
,
點(diǎn),點(diǎn),點(diǎn),點(diǎn)四點(diǎn)共圓,


;故③正確;
,則,

,
,故④錯(cuò)誤;
故答案為:①②③.
16.如圖,在正方形中,、是射線上一動(dòng)點(diǎn),且,射線、分別交、延長線于、,連接;在下列結(jié)論中①;②;③;④;⑤若,則;⑥.其中一定正確的是 ①③④⑥ .(把正確的序號(hào)寫在橫線上)
【解答】解:四邊形是正方形,
,,
又,
,
,故①正確;
不一定為,
不一定與相等,
即與不一定全等,故②錯(cuò)誤;
如圖1,在上截取,連接,
,,,

,,
,

,
又,,
,
,
,故③正確;
如圖2,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,連接,
,,
,,,
,
,
,

,
又,,
,

在中,,
,故④正確;
,
設(shè),則,
,
如圖1,在上截取,連接,
由③可得:,
設(shè),則,
,
,

,
,故⑤錯(cuò)誤;
如圖1,
,
,
,故⑥正確;
故答案為:①③④⑥.
17.如圖,在正方形中,對(duì)角線,相交于點(diǎn),點(diǎn)在邊上,且,連接交于點(diǎn),過點(diǎn)作,連接并延長,交于點(diǎn),過點(diǎn)作分別交、于點(diǎn)、,交的延長線于點(diǎn),現(xiàn)給出下列結(jié)論:①;②;③;④.其中正確的結(jié)論有 ①②④ (填入正確的序號(hào)).
【解答】解:四邊形是正方形,
,,
,
,
,
,
,
,
,
,
,故①正確;
如圖,過點(diǎn)作于,
,
,
,
,
,
,
,
,,
,
,
又,,
,
,故④正確;
,,,
,
,,,
,
,
,
,故②正確;
,,
,故③錯(cuò)誤.
綜上,正確的是①②④.
故答案為:①②④.
18.如圖,在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),與交于點(diǎn),,,垂足分別為,,連接,,.下列結(jié)論:①;②;③;④;⑤;⑥.其中結(jié)論正確的序號(hào)是 ①②③④⑥ .
【解答】解:四邊形是正方形,
,,
,
,
又,,
,
,,
,故①正確;
設(shè)正方形的邊長為,則,
點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),
,,
,
,
,
,
,
,
,
,
,故②正確;
如圖,延長交于,
點(diǎn)是中點(diǎn),

,,
,
,
又,
,
,,
,
,
又,
,
,
,
,故③正確;
,
,
,
,
,,
,
,故④正確;
,
,
,
,
,
,
,
,
,故⑤錯(cuò)誤;
,,
,故⑥正確;
故答案為:①②③④⑥.

相關(guān)試卷

2025年中考數(shù)學(xué)考前沖刺:二次函數(shù)與角度問題 強(qiáng)化壓軸練習(xí)題(含答案解析):

這是一份2025年中考數(shù)學(xué)考前沖刺:二次函數(shù)與角度問題 強(qiáng)化壓軸練習(xí)題(含答案解析),共61頁。試卷主要包含了已知,拋物線與軸交于點(diǎn)等內(nèi)容,歡迎下載使用。

2025年中考數(shù)學(xué)考前沖刺:二次函數(shù)綜合壓軸題 強(qiáng)化練習(xí)題(含答案):

這是一份2025年中考數(shù)學(xué)考前沖刺:二次函數(shù)綜合壓軸題 強(qiáng)化練習(xí)題(含答案),共49頁。試卷主要包含了二次函數(shù)與直角三角形綜合,二次函數(shù)與等腰三角形綜合,二次函數(shù)與平行四邊形綜合,二次函數(shù)與矩形綜合等內(nèi)容,歡迎下載使用。

中考數(shù)學(xué)三輪沖刺考前強(qiáng)化練習(xí)05 解直角三角形(教師版):

這是一份中考數(shù)學(xué)三輪沖刺考前強(qiáng)化練習(xí)05 解直角三角形(教師版),共20頁。試卷主要包含了銳角三角函數(shù)的有關(guān)定義等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

中考數(shù)學(xué)三輪沖刺考前強(qiáng)化練習(xí)04 三角形與四邊形(教師版)

中考數(shù)學(xué)三輪沖刺考前強(qiáng)化練習(xí)04 三角形與四邊形(教師版)

2023年中考數(shù)學(xué)考前強(qiáng)化復(fù)習(xí)《二次函數(shù)與四邊形綜合題》精選練習(xí)(含答案)

2023年中考數(shù)學(xué)考前強(qiáng)化復(fù)習(xí)《二次函數(shù)與四邊形綜合題》精選練習(xí)(含答案)

中考數(shù)學(xué)考前沖刺專題《三角形》過關(guān)練習(xí)(含答案)

中考數(shù)學(xué)考前沖刺專題《三角形》過關(guān)練習(xí)(含答案)

中考數(shù)學(xué)考前沖刺專題《平行四邊形》過關(guān)練習(xí)(含答案)

中考數(shù)學(xué)考前沖刺專題《平行四邊形》過關(guān)練習(xí)(含答案)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號(hào)注冊
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號(hào)注冊
微信注冊

注冊成功

返回
頂部