
【考綱要求】
1.掌握正弦定理、余弦定理及其變形.
2.能利用正弦定理、余弦定理解決一些簡(jiǎn)單的三角形度量問題.
【考點(diǎn)預(yù)測(cè)】
1.正弦定理與余弦定理
2.三角形中常用的面積公式
(1)S=eq \f(1,2)aha(ha表示邊a上的高);
(2)S=eq \f(1,2)absin C=eq \f(1,2)acsin B=eq \f(1,2)bcsin A;
(3)S=eq \f(1,2)r(a+b+c)(r為三角形的內(nèi)切圓半徑).
3.三角形解的判斷
【常用結(jié)論】
1.三角形內(nèi)角和定理
在△ABC中,A+B+C=π;
變形:eq \f(A+B,2)=eq \f(π,2)-eq \f(C,2).
2.三角形中的三角函數(shù)關(guān)系
(1)sin(A+B)=sin C.
(2)cs(A+B)=-cs C.
(3)sineq \f(A+B,2)=cs eq \f(C,2).
(4)cseq \f(A+B,2)=sin eq \f(C,2).
3.三角形中的射影定理
在△ABC中,a=bcs C+ccs B;
b=acs C+ccs A;
c=bcs A+acs B.
【方法技巧】
1.正弦定理、余弦定理的作用是在已知三角形部分元素的情況下求解其余元素,基本思想是方程思想,即根據(jù)正弦定理、余弦定理列出關(guān)于未知元素的方程,通過解方程求得未知元素.
2.正弦定理、余弦定理的另一個(gè)作用是實(shí)現(xiàn)三角形邊角關(guān)系的互化,解題時(shí)可以把已知條件化為角的三角函數(shù)關(guān)系,也可以把已知條件化為三角形邊的關(guān)系.
3.判定三角形形狀的途徑:
(1)化邊為角,通過三角變換找出角之間的關(guān)系;
(2)化角為邊,通過代數(shù)變形找出邊之間的關(guān)系,正(余)弦定理是轉(zhuǎn)化的橋梁.
4.無論使用哪種方法,都不要隨意約掉公因式,要移項(xiàng)提取公因式,否則會(huì)有漏掉一種形狀的可能.注意挖掘隱含條件,重視角的范圍對(duì)三角函數(shù)值的限制.
5.與三角形面積有關(guān)問題的解題策略:
(1)利用正弦、余弦定理解三角形,求出三角形的相關(guān)邊、角之后,直接求三角形的面積;
(2)把面積作為已知條件之一,與正弦、余弦定理結(jié)合求出三角形的其他量.
二、【題型歸類】
【題型一】利用正弦定理、余弦定理解三角形
【典例1】已知在△ABC中,c=2bcs B,C=eq \f(2π,3).
(1)求B的大??;
(2)在下列三個(gè)條件中選擇一個(gè)作為已知,使△ABC存在且唯一確定,并求出BC邊上的中線的長(zhǎng)度.
①c=eq \r(2)b;②周長(zhǎng)為4+2eq \r(3);③面積為S△ABC=eq \f(3\r(3),4).
【解析】(1)∵c=2bcs B,
則由正弦定理可得sin C=2sin Bcs B,
∴sin 2B=sin eq \f(2π,3)=eq \f(\r(3),2),∵C=eq \f(2π,3),
∴B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,3))),2B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(2π,3))),
∴2B=eq \f(π,3),解得B=eq \f(π,6).
(2)若選擇①:由正弦定理結(jié)合(1)可得
eq \f(c,b)=eq \f(sin C,sin B)=eq \f(\f(\r(3),2),\f(1,2))=eq \r(3),
與c=eq \r(2)b矛盾,故這樣的△ABC不存在;
若選擇②:由(1)可得A=eq \f(π,6),
設(shè)△ABC的外接圓半徑為R,
則由正弦定理可得a=b=2Rsin eq \f(π,6)=R,
c=2Rsin eq \f(2π,3)=eq \r(3)R,
則周長(zhǎng)為a+b+c=2R+eq \r(3)R=4+2eq \r(3),
解得R=2,則a=2,c=2eq \r(3),
由余弦定理可得BC邊上的中線的長(zhǎng)度為
eq \r(?2\r(3)?2+12-2×2\r(3)×1×cs \f(π,6))=eq \r(7);
若選擇③:由(1)可得A=eq \f(π,6),即a=b,
則S△ABC=eq \f(1,2)absin C=eq \f(1,2)a2×eq \f(\r(3),2)=eq \f(3\r(3),4),
解得a=eq \r(3),
則由余弦定理可得BC邊上的中線的長(zhǎng)度為
eq \r(b2+\b\lc\(\rc\)(\a\vs4\al\c1(\f(a,2)))2-2×b×\f(a,2)×cs \f(2π,3))
=eq \r(3+\f(3,4)+\r(3)×\f(\r(3),2))=eq \f(\r(21),2).
【典例2】記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知b2=ac,點(diǎn)D在邊AC上,BDsin ∠ABC=asin C.
(1)證明:BD=b.
(2)若AD=2DC,求cs ∠ABC.
【解析】(1)證明 因?yàn)锽Dsin∠ABC=asin C,
所以由正弦定理得,BD·b=ac,
又b2=ac,所以BD·b=b2,
又b>0,所以BD=b.
(2)解 法一 如圖所示,過點(diǎn)D作DE∥BC交AB于E,
因?yàn)锳D=2DC,
所以eq \f(AE,EB)=eq \f(AD,DC)=2,
eq \f(DE,BC)=eq \f(2,3),
所以BE=eq \f(c,3),DE=eq \f(2,3)a.
在△BDE中,cs∠BED=eq \f(BE2+DE2-BD2,2BE·DE)
=eq \f(\f(c2,9)+\f(4a2,9)-b2,2·\f(c,3)·\f(2a,3))=eq \f(c2+4a2-9b2,4ac)
=eq \f(c2+4a2-9ac,4ac).
在△ABC中,cs∠ABC=eq \f(AB2+BC2-AC2,2AB·BC)
=eq \f(c2+a2-b2,2ac)=eq \f(c2+a2-ac,2ac).
因?yàn)椤螧ED=π-∠ABC,
所以cs∠BED=-cs ∠ABC,
所以eq \f(c2+4a2-9ac,4ac)=-eq \f(c2+a2-ac,2ac),
化簡(jiǎn)得3c2+6a2-11ac=0,
方程兩邊同時(shí)除以a2,
得3eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,a)))eq \s\up12(2)-11eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(c,a)))+6=0,
解得eq \f(c,a)=eq \f(2,3)或eq \f(c,a)=3.
當(dāng)eq \f(c,a)=eq \f(2,3),即c=eq \f(2,3)a時(shí),cs ∠ABC=eq \f(c2+a2-ac,2ac)=eq \f(\f(4,9)a2+a2-\f(2,3) a2,\f(4,3)a2)=eq \f(7,12);
當(dāng)eq \f(c,a)=3,即c=3a時(shí),
cs ∠ABC=eq \f(c2+a2-ac,2ac)=eq \f(9a2+a2-3a2,6a2)=eq \f(7,6)>1(舍).
綜上,cs ∠ABC=eq \f(7,12).
法二 因?yàn)閑q \(AD,\s\up6(→))=2eq \(DC,\s\up6(→)),
所以eq \(BD,\s\up6(→))=eq \f(2,3)eq \(BC,\s\up6(→))+eq \f(1,3)eq \(BA,\s\up6(→)),
所以eq \(BD,\s\up6(→))2=eq \f(4,9)eq \(BC,\s\up6(→))2+eq \f(4,9)eq \(BC,\s\up6(→))·eq \(BA,\s\up6(→))+eq \f(1,9)eq \(BA,\s\up6(→))2.
因?yàn)锽D=b,
所以b2=eq \f(4,9)a2+eq \f(4,9)accs∠ABC+eq \f(1,9)c2,
所以9b2=4a2+4accs∠ABC+c2.①
又b2=ac=a2+c2-2accs∠ABC,②
所以①-②,得8ac=3a2+6accs∠ABC,
所以cs∠ABC=eq \f(8ac-3a2,6ac)=eq \f(4,3)-eq \f(a,2c).
由①②知eq \b\lc\{(\a\vs4\al\c1(9=4×\f(a,c)+4cs∠ABC+\f(c,a),,1=\f(a,c)+\f(c,a)-2cs∠ABC,))
所以11=eq \f(6a,c)+eq \f(3c,a),
所以6eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,c)))eq \s\up12(2)-11×eq \f(a,c)+3=0,解得eq \f(a,c)=eq \f(3,2)或eq \f(a,c)=eq \f(1,3).
當(dāng)eq \f(a,c)=eq \f(3,2)時(shí),cs∠ABC=eq \f(4,3)-eq \f(3,4)=eq \f(7,12);
當(dāng)eq \f(a,c)=eq \f(1,3)時(shí),cs∠ABC=eq \f(4,3)-eq \f(1,6)=eq \f(7,6)(不合題意,舍去).
所以cs∠ABC=eq \f(7,12).
【典例3】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知bsin C+asin A=bsin B+csin C.
(1)求A;
(2)設(shè)D是線段BC的中點(diǎn),若c=2,AD=eq \r(13),求a.
【解析】(1)根據(jù)正弦定理,
由bsin C+asin A=bsin B+csin C,
可得bc+a2=b2+c2,
即bc=b2+c2-a2,
由余弦定理可得,cs A=eq \f(b2+c2-a2,2bc)=eq \f(1,2),
因?yàn)锳為三角形內(nèi)角,所以A=eq \f(π,3).
(2)因?yàn)镈是線段BC的中點(diǎn),c=2,AD=eq \r(13),
所以∠ADB+∠ADC=π,
則cs∠ADB+cs∠ADC=0,
所以eq \f(AD2+BD2-AB2,2AD·BD)+eq \f(AD2+DC2-AC2,2AD·DC)=0,
即eq \f(13+\f(a2,4)-22,2\r(13)·\f(a,2))+eq \f(13+\f(a2,4)-b2,2\r(13)·\f(a,2))=0,
整理得a2=2b2-44,
又a2=b2+c2-2bccs A=b2+4-2b,
所以b2+4-2b=2b2-44,
解得b=6或b=-8(舍),
因此a2=2b2-44=28,
所以a=2eq \r(7).
【題型二】判斷三角形的形狀
【典例1】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcs C+ccs B=asin A,則△ABC的形狀為( )
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.不確定
【解析】由正弦定理得sin Bcs C+sin Ccs B=sin2A,
∴sin(B+C)=sin2A,
即sin(π-A)=sin2A,sin A=sin2A.
∵A∈(0,π),∴sin A>0,∴sin A=1,
即A=eq \f(π,2),∴△ABC為直角三角形.
故選B.
【典例2】(多選)已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,下列四個(gè)命題中正確的是( )
A.若tan A+tan B+tan C>0,則△ABC是銳角三角形
B.若acs A=bcs B,則△ABC是等腰三角形
C.若bcs C+ccs B=b,則△ABC是等腰三角形
D.若eq \f(a,cs A)=eq \f(b,cs B)=eq \f(c,cs C),則△ABC是等邊三角形
【解析】∵tan A+tan B+tan C=tan Atan Btan C>0,
∴A,B,C均為銳角,∴選項(xiàng)A正確;
由acs A=bcs B及正弦定理,可得sin 2A=sin 2B,
∴A=B或A+B=eq \f(π,2),
∴△ABC是等腰三角形或直角三角形,∴選項(xiàng)B錯(cuò);
由bcs C+ccs B=b及正弦定理,
可知sin Bcs C+sin Ccs B=sin B,
∴sin A=sin B,
∴A=B,∴選項(xiàng)C正確;
由已知和正弦定理,易知tan A=tan B=tan C,
∴選項(xiàng)D正確.
故選ACD.
【典例3】在△ABC中,a∶b∶c=3∶5∶7,那么△ABC是( )
A.直角三角形 B.鈍角三角形
C.銳角三角形 D.非鈍角三角形
【解析】因?yàn)閍∶b∶c=3∶5∶7,所以可設(shè)a=3t,b=5t,c=7t,由余弦定理可得cs C=eq \f(9t2+25t2-49t2,2×3t×5t)=-eq \f(1,2),所以C=120°,△ABC是鈍角三角形.
故選B.
【題型三】與三角形面積有關(guān)的問題
【典例1】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若b=6,a=2c,B=eq \f(π,3),則△ABC的面積為________.
【解析】法一:因?yàn)閍=2c,b=6,B=eq \f(π,3),所以由余弦定理b2=a2+c2-2accs B,得62=(2c)2+c2-2×2c×ccs eq \f(π,3),得c=2eq \r(3),所以a=4eq \r(3),所以△ABC的面積S=eq \f(1,2)acsin B=eq \f(1,2)×4eq \r(3)×2eq \r(3)×sin eq \f(π,3)=6eq \r(3).
法二:因?yàn)閍=2c,b=6,B=eq \f(π,3),所以由余弦定理b2=a2+c2-2accs B,得62=(2c)2+c2-2×2c×ccs eq \f(π,3),得c=2eq \r(3),所以a=4eq \r(3),所以a2=b2+c2,所以A=eq \f(π,2),所以△ABC的面積S=eq \f(1,2)×2eq \r(3)×6=6eq \r(3).
【典例2】在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,已知a2+b2-c2=eq \r(3)ab,且acsin B=2eq \r(3)sin C,則△ABC的面積為________.
【解析】因?yàn)閍2+b2-c2=eq \r(3)ab,所以由余弦定理得cs C=eq \f(a2+b2-c2,2ab)=eq \f(\r(3)ab,2ab)=eq \f(\r(3),2),又0<C<π,所以C=eq \f(π,6).因?yàn)閍csin B=2eq \r(3)sin C,結(jié)合正弦定理可得abc=2eq \r(3)c,所以ab=2eq \r(3).故S△ABC=eq \f(1,2)absin C=eq \f(1,2)×2eq \r(3)sineq \f(π,6)=eq \f(\r(3),2).
【典例3】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知csineq \b\lc\(\rc\)(\a\vs4\al\c1(A+\f(π,3)))-asin C=0.
(1)求角A的值;
(2)若△ABC的面積為eq \r(3),周長(zhǎng)為6,求a的值.
【解析】(1)因?yàn)閏sineq \b\lc\(\rc\)(\a\vs4\al\c1(A+\f(π,3)))-asin C=0,
所以由正弦定理得sin Ceq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)sin A+\f(\r(3),2)cs A))-sin A·sin C=0.
因?yàn)閟in C>0,
所以eq \f(\r(3),2)cs A-eq \f(1,2)sin A=0,即tan A=eq \r(3),
因?yàn)锳∈(0,π),所以A=eq \f(π,3).
(2)因?yàn)椤鰽BC的面積為eq \r(3),所以eq \f(1,2)bcsin A=eq \r(3),得bc=4.
由余弦定理a2=b2+c2-2bccs A,得a2=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
因?yàn)椤鰽BC的周長(zhǎng)為6,即a+b+c=6,
所以a2=(6-a)2-12,
所以a=2.
三、【培優(yōu)訓(xùn)練】
【訓(xùn)練一】我國(guó)南宋著名數(shù)學(xué)家秦九韶提出了由三角形三邊求三角形面積的“三斜求積”公式.設(shè)△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,面積為S,則“三斜求積”公式為S=eq \r(\f(1,4)\b\lc\[\rc\](\a\vs4\al\c1(a2c2-\b\lc\(\rc\)(\a\vs4\al\c1(\f(a2+c2-b2,2)))\s\up12(2)))).若a2sin C=2sin A,(a+c)2=6+b2,則用“三斜求積”公式求得的△ABC的面積為( )
A.eq \r(3) B.1
C.eq \f(\r(3),2) D.eq \f(1,2)
【解析】因?yàn)閍2sin C=2sin A,所以a2c=2a.又a>0,所以ac=2.
因?yàn)?a+c)2=6+b2,所以a2+c2+2ac=6+b2,所以a2+c2-b2=6-2ac=6-4=2.所以△ABC的面積為S=eq \r(\f(1,4)×\b\lc\[\rc\](\a\vs4\al\c1(22-\b\lc\(\rc\)(\a\vs4\al\c1(\f(2,2)))\s\up12(2))))=eq \f(\r(3),2).
故選C.
【訓(xùn)練二】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若eq \f(1,tan A),eq \f(1,tan B),eq \f(1,tan C)依次成等差數(shù)列,則下列結(jié)論中不一定成立的是( )
A.a(chǎn),b,c依次成等差數(shù)列
B.eq \r(a),eq \r(b),eq \r(c)依次成等差數(shù)列
C.a(chǎn)2,b2,c2依次成等差數(shù)列
D.a(chǎn)3,b3,c3依次成等差數(shù)列
【解析】在△ABC中,若eq \f(1,tan A),eq \f(1,tan B),eq \f(1,tan C)依次成等差數(shù)列,則eq \f(2,tan B)=eq \f(1,tan A)+eq \f(1,tan C).所以eq \f(2cs B,sin B)=eq \f(cs A,sin A)+eq \f(cs C,sin C).利用正弦定理和余弦定理得,2·eq \f(a2+c2-b2,2abc)=eq \f(b2+c2-a2,2abc)+eq \f(a2+b2-c2,2abc),整理得2b2=a2+c2,即a2,b2,c2依次成等差數(shù)列.此時(shí)對(duì)等差數(shù)列a2,b2,c2的每一項(xiàng)取相同的運(yùn)算得到數(shù)列a,b,c或eq \r(a),eq \r(b),eq \r(c)或a3,b3,c3,這些數(shù)列一般都不可能是等差數(shù)列,除非a=b=c.故都不一定成立.
故選ABD.
【訓(xùn)練三】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知△ABC的面積為eq \f(\r(3),2)accs B,且sin A=3sin C.
(1)求角B的大小;
(2)若c=2,AC的中點(diǎn)為D,求BD的長(zhǎng).
【解析】(1)因?yàn)镾△ABC=eq \f(1,2)acsin B=eq \f(\r(3),2)accs B,
所以tan B=eq \r(3).
又0<B<π,所以B=eq \f(π,3).
(2)sin A=3sin C,由正弦定理得,a=3c,所以a=6.
由余弦定理得,b2=62+22-2×2×6×cs 60°=28,所以b=2eq \r(7).
所以cs A=eq \f(b2+c2-a2,2bc)=eq \f((2\r(7))2+22-62,2×2×2\r(7))=-eq \f(\r(7),14).
因?yàn)镈是AC的中點(diǎn),所以AD=eq \r(7).
所以BD2=AB2+AD2-2AB·ADcs A=22+(eq \r(7))2-2×2×eq \r(7)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(7),14)))=13.
所以BD=eq \r(13).
【訓(xùn)練四】如圖所示,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域建一工廠P,分別在兩條公路邊上建兩個(gè)倉(cāng)庫(kù)M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì),使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn))?
【解析】設(shè)∠AMN=θ,在△AMN中,
eq \f(MN,sin 60°)=eq \f(AM,sin?120°-θ?).
因?yàn)镸N=2,所以AM=eq \f(4\r(3),3)sin(120°-θ).
在△APM中,cs∠AMP=cs(60°+θ).
AP2=AM2+MP2-2AM·MP·cs∠AMP=
eq \f(16,3)sin2(120°-θ)+4-2×2×eq \f(4\r(3),3)sin(120°-θ)·cs(60°+θ)
=eq \f(16,3)sin2(θ+60°)-eq \f(16\r(3),3)sin(θ+60°)·cs(θ+60°)+4
=eq \f(8,3)[1-cs(2θ+120°)]-eq \f(8\r(3),3)sin(2θ+120°)+4
=-eq \f(8,3)[eq \r(3)sin(2θ+120°)+cs(2θ+120°)]+eq \f(20,3)
=eq \f(20,3)-eq \f(16,3)sin(2θ+150°),0°a,若△ABC為鈍角三角形,則C為鈍角,
由余弦定理可得
cs C=eq \f(a2+b2-c2,2ab)=eq \f(a2+?a+1?2-?a+2?2,2a?a+1?)
=eq \f(a2-2a-3,2a?a+1?)cs B恒成立
C.在△ABC中,若acs A=bcs B,則△ABC必是等腰直角三角形
D.在△ABC中,若B=60°,b2=ac,則△ABC必是等邊三角形
【解析】對(duì)于A,在△ABC中,由正弦定理可得eq \f(a,sin A)=eq \f(b,sin B),所以sin A>sin B?a>b?A>B,故A正確;對(duì)于B,在銳角三角形ABC中,A,B∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),且A+B>eq \f(π,2),則eq \f(π,2)>A>eq \f(π,2)-B>0,所以sin A>sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-B))=cs B,故B正確;對(duì)于C,在△ABC中,由acs A=bcs B,利用正弦定理可得sin 2A=sin 2B,得到2A=2B或2A=π-2B,故A=B或A=eq \f(π,2)-B,即△ABC是等腰三角形或直角三角形,故C錯(cuò)誤;對(duì)于D,在△ABC中,若B=60°,b2=ac,由余弦定理可得,b2=a2+c2-2accs B,所以ac=a2+c2-ac,即(a-c)2=0,解得a=c.又B=60°,所以△ABC必是等邊三角形,故D正確.
故選ABD.
11. 某人向正東走了x km后向右轉(zhuǎn)了150°,然后沿新方向走3 km,結(jié)果離出發(fā)點(diǎn)恰好eq \r(3) km,那么x的值是( )
A.eq \r(3) B.2eq \r(3) C.3 D.6
【解析】如圖,AB=x,BC=3,AC=eq \r(3),∠ABC=30°.
由余弦定理得3=x2+9-2×3×x×cs 30°.
解得x=2eq \r(3)或x=eq \r(3),
故選AB.
12. 對(duì)于△ABC,有如下判斷,其中正確的判斷是( )
A.若cs A=cs B,則△ABC為等腰三角形
B.若△ABC為銳角三角形,有A+B>eq \f(π,2),則sin A>cs B
C.若a=8,c=10,B=60°,則符合條件的△ABC有兩個(gè)
D.若sin2A+sin2Beq \f(π,2),則eq \f(π,2)>A>eq \f(π,2)-B>0,∴sin A>cs B,故正確;
對(duì)于C,由余弦定理可得b=eq \r(82+102-2×8×10×\f(1,2))=eq \r(84),只有一解,故錯(cuò)誤;
對(duì)于D,若sin2A+sin2B
這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測(cè)試專題30正弦定理和余弦定理(學(xué)生版),共7頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。
這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測(cè)試專題35復(fù)數(shù)(教師版),共12頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。
這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測(cè)試專題39數(shù)列求和(教師版),共22頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功