
1.能應(yīng)用解直角三角形的知識解決與方位角、坡度有關(guān)的實際問題.2.培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法.
1.測量高度時,仰角與俯角有何區(qū)別?
如圖,有兩建筑物,在甲建筑物上從A到E點(diǎn)掛一長為30米的宣傳條幅,在乙建筑物的頂部D點(diǎn)測得條幅頂端A點(diǎn)的仰角為45°,條幅底端E點(diǎn)的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.
坡度(坡比)、坡角:(1)坡度也叫坡比,用i表示.即i=h/l,h是坡面的鉛直高度,l為對應(yīng)水平寬度,如圖所示(2)坡角:坡面與水平面的夾角.(3)坡度與坡角(若用α表示)的關(guān)系:i=tanα. 方向角:指南或北方向線與目標(biāo)方向線所成的小于90°的角,叫方向角.
【例】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東34°方向上的B處,這時,海輪所在的B處距離燈塔P有多遠(yuǎn)(結(jié)果保留小數(shù)點(diǎn)后一位)?
【解析】如圖 ,在Rt△APC中,
PC=PA·cs(90°-65°)
在Rt△BPC中,∠B=34°
答:當(dāng)海輪到達(dá)位于燈塔P的南偏東34°方向時,它距離燈塔P大約129.7海里.
解直角三角形有廣泛的應(yīng)用,解決問題時,要根據(jù)實際情況靈活運(yùn)用相關(guān)知識,例如,當(dāng)我們要測量如圖所示大壩的高度h時,只要測出仰角a和大壩的坡面長度l,就能算出h=lsina,但是,當(dāng)我們要測量如圖所示的山高h(yuǎn)時,問題就不那么簡單了,這是由于不能很方便地得到仰角a和山坡長度l
化整為零,積零為整,化曲為直,以直代曲的解決問題的策略.
與測壩高相比,測山高的困難在于;壩坡是“直”的,而山坡是“曲”的,怎樣解決這樣的問題呢?
我們設(shè)法“化曲為直,以直代曲”. 我們可以把山坡“化整為零”地劃分為一些小段,如圖表示其中一部分小段,劃分小段時,注意使每一小段上的山坡近似是“直”的,可以量出這段坡長li,測出相應(yīng)的仰角ai,這樣就可以算出這段山坡的高度hi=lisinai.
在每小段上,我們都構(gòu)造出直角三角形,利用上面的方法分別算出各段山坡的高度h1,h2,…,hn,然后我們再“積零為整”,把h1,h2,…,hn相加,于是得到山高h(yuǎn).
以上解決問題中所用的“化整為零,積零為整”“化曲為直,以直代曲”的做法,就是高等數(shù)學(xué)中微積分的基本思想,它在數(shù)學(xué)中有重要地位,在今后的學(xué)習(xí)中,你會更多地了解這方面的內(nèi)容.
如圖所示,某地下車庫的入口處有斜坡AB,其坡比i=1∶1.5,則AB= m.
1.(宿遷·中考)小明沿著坡度為1:2的山坡向上走了1000m,則他升高了( )
2.(達(dá)州·中考)如圖,一水庫迎水坡AB的坡度
則該坡的坡角α=______.
3.(成都·中考)如圖,在亞丁灣一海域執(zhí)行護(hù)航任務(wù)的我海軍某軍艦由東向西行駛.在航行到B處時,發(fā)現(xiàn)燈塔A在我軍艦的正北方向500米處;當(dāng)該軍艦從B處向正西方向行駛至達(dá)C處時,發(fā)現(xiàn)燈塔A在我軍艦的北偏東60°的方向.求該軍艦行駛的路程.(計算過程和結(jié)果均不取近似值)
【解析】∵∠A=60°,∴BC=AB×tanA=500×tan60°=
4.海中有一個小島A,它的周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在B點(diǎn)測得小島A在北偏東60°方向上,航行12海里到達(dá)D點(diǎn),這時測得小島A在北偏東30°方向上,如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?
【解析】由點(diǎn)A作BD的垂線
交BD的延長線于點(diǎn)F,垂足為F,∠AFD=90°.
由題意圖示可知∠DAF=30°,
設(shè)DF=x, AD=2x.
則在Rt△ADF中,根據(jù)勾股定理
,10.4 > 8沒有觸礁危險.
5. 如圖,攔水壩的橫斷面為梯形ABCD(圖中i2=1:3是指坡面的鉛直高度DE與水平寬度CE的比),根據(jù)圖中數(shù)據(jù)求:坡角α和β.
【解析】在Rt△AFB中,∠AFB=90°,
在Rt△CDE中,∠CED=90°,
這是一份初中數(shù)學(xué)人教版九年級下冊28.2 解直角三角形及其應(yīng)用示范課課件ppt,共49頁。PPT課件主要包含了新課導(dǎo)入,知識點(diǎn)1,PB之間的距離,知識點(diǎn)2,基礎(chǔ)鞏固,綜合應(yīng)用,方向角,復(fù)習(xí)鞏固,∴AD⊥BC,解由題意可得等內(nèi)容,歡迎下載使用。
這是一份初中28.2 解直角三角形及其應(yīng)用完美版課件ppt,文件包含2822應(yīng)用舉例第2課時與方向角坡角有關(guān)的應(yīng)用問題pptx、2822應(yīng)用舉例第2課時方向角和坡角問題導(dǎo)學(xué)案doc、2822應(yīng)用舉例第2課時方向角和坡角問題教案doc等3份課件配套教學(xué)資源,其中PPT共49頁, 歡迎下載使用。
這是一份人教版九年級下冊28.2 解直角三角形及其應(yīng)用優(yōu)秀ppt課件,共25頁。PPT課件主要包含了水平線,北偏東30°,南偏西45°,射線OA,射線OE,射線OF,射線OG,射線OH,80×cos25°,≈80×091等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊
注冊成功