專題12 手拉手模型證相似 1.如圖, SKIPIF 1 < 0 且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 交于點 SKIPIF 1 < 0 .則下列四個結(jié)論中,① SKIPIF 1 < 0 ;② SKIPIF 1 < 0 ;③ SKIPIF 1 < 0 ;④ SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四點在同一個圓上,一定成立的有 SKIPIF 1 < 0    SKIPIF 1 < 0  A.1個 B.2個 C.3個 D.4個 【解答】解: SKIPIF 1 < 0 且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故②正確;  SKIPIF 1 < 0 , 即 SKIPIF 1 < 0 ,故①正確;  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,故③正確;  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , 即 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四點在同一個圓上,故④正確. 故選: SKIPIF 1 < 0 . 二.解答題(共15小題) 2.如圖,已知 SKIPIF 1 < 0 .求證: SKIPIF 1 < 0 . 【解答】證明: SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 3.如圖,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 . (1) SKIPIF 1 < 0 和 SKIPIF 1 < 0 相似嗎?為什么? (2)如果 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 成立,據(jù)此你能說明 SKIPIF 1 < 0 和 SKIPIF 1 < 0 相似嗎? 【解答】解:(1) SKIPIF 1 < 0   SKIPIF 1 < 0   SKIPIF 1 < 0   SKIPIF 1 < 0 ; (2) SKIPIF 1 < 0 , SKIPIF 1 < 0   SKIPIF 1 < 0 . 4.如圖,在公共頂點為 SKIPIF 1 < 0 的 SKIPIF 1 < 0 與 SKIPIF 1 < 0 中,直角邊 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 .求證: SKIPIF 1 < 0 . 【解答】證明:如圖,設(shè) SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,延長 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 .  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四點共圓,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 5.如圖, SKIPIF 1 < 0 與 SKIPIF 1 < 0 有公共的頂點 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .點 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點. (1)如圖1,當(dāng) SKIPIF 1 < 0 時,猜想線段 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的數(shù)量關(guān)系,并說明理由; (2)如圖2,當(dāng) SKIPIF 1 < 0 時,猜想線段 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的數(shù)量關(guān)系,并說明理由. 【解答】解:(1) SKIPIF 1 < 0 .連接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ;  SKIPIF 1 < 0 點 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 根據(jù)中位線定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . (2) SKIPIF 1 < 0 .連接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 點 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 根據(jù)中位線定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 即得 SKIPIF 1 < 0 . 6. SKIPIF 1 < 0 為等邊三角形, SKIPIF 1 < 0 為 SKIPIF 1 < 0 邊上一點, SKIPIF 1 < 0 為射線 SKIPIF 1 < 0 上一點, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . (1)求證: SKIPIF 1 < 0 ; (2) SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 并延長交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 并延長交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的長. 【解答】(1)證明:如圖1中,延長 SKIPIF 1 < 0 到 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 .  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . (2)解:如圖2中,取 SKIPIF 1 < 0 的中點 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 ,作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 . 由(1)可知 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 是平行四邊形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 設(shè) SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 7.在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,連接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 . (1)如圖1,當(dāng) SKIPIF 1 < 0 時, SKIPIF 1 < 0 的值是   SKIPIF 1 < 0  ,直線 SKIPIF 1 < 0 與直線 SKIPIF 1 < 0 相交所成的較小角的度數(shù)為  ??; (2)如圖2,當(dāng) SKIPIF 1 < 0 時,求 SKIPIF 1 < 0 的值及直線 SKIPIF 1 < 0 與直線 SKIPIF 1 < 0 相交所成的較小角的度數(shù); (3)如圖3,當(dāng) SKIPIF 1 < 0 時,若點 SKIPIF 1 < 0 為 SKIPIF 1 < 0 的中點,點 SKIPIF 1 < 0 在直線 SKIPIF 1 < 0 上,請直接寫出點 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在同一直線上時 SKIPIF 1 < 0 的值. 【解答】解:(1)如圖1,連接 SKIPIF 1 < 0 ,并延長交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,設(shè)直線 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的交點為 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 是等邊三角形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故答案為: SKIPIF 1 < 0 , SKIPIF 1 < 0 ; (2)如圖2,連接 SKIPIF 1 < 0 ,并延長交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,設(shè)直線 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的交點為 SKIPIF 1 < 0 ,過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 直線 SKIPIF 1 < 0 與直線 SKIPIF 1 < 0 相交所成的較小角的度數(shù)為 SKIPIF 1 < 0 ; (3)如圖3,當(dāng)點 SKIPIF 1 < 0 在線段 SKIPIF 1 < 0 上時,連接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,點 SKIPIF 1 < 0 為 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 、 SKIPIF 1 < 0 分別為 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中點,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 點 SKIPIF 1 < 0 是 SKIPIF 1 < 0 中點,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , 當(dāng)點 SKIPIF 1 < 0 在線段 SKIPIF 1 < 0 上時,同理可求 SKIPIF 1 < 0 , 綜上所述: SKIPIF 1 < 0 的值為 SKIPIF 1 < 0 或 SKIPIF 1 < 0 . 8.(1)如圖①,將 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 旋轉(zhuǎn)任意角度得到△ SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,證明: SKIPIF 1 < 0 . (2)如圖②,四邊形 SKIPIF 1 < 0 和四邊形 SKIPIF 1 < 0 均為正方形,連接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值. 【解答】證明:(1) SKIPIF 1 < 0 將 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 旋轉(zhuǎn)任意角度得到△ SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ; (2)連接 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 和四邊形 SKIPIF 1 < 0 均為正方形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , 則 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 .  SKIPIF 1 < 0 .  SKIPIF 1 < 0  SKIPIF 1 < 0 . 9.在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 為 SKIPIF 1 < 0 邊上一點,點 SKIPIF 1 < 0 , SKIPIF 1 < 0 分別在邊 SKIPIF 1 < 0 , SKIPIF 1 < 0 上, SKIPIF 1 < 0 . (1)如圖1,當(dāng) SKIPIF 1 < 0 為 SKIPIF 1 < 0 中點時, SKIPIF 1 < 0   SKIPIF 1 < 0 ??; (2)如圖2,若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值. 【解答】解:(1)過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,垂足為 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 為 SKIPIF 1 < 0 中點,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , 故答案為: SKIPIF 1 < 0 ; (2)過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,垂足為 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 的值為 SKIPIF 1 < 0 . 10.已知:點 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在同一條直線上, SKIPIF 1 < 0 ,線段 SKIPIF 1 < 0 、 SKIPIF 1 < 0 交于點 SKIPIF 1 < 0 . (1)如圖1,若 SKIPIF 1 < 0 , SKIPIF 1 < 0  ①問線段 SKIPIF 1 < 0 與 SKIPIF 1 < 0 有怎樣的數(shù)量關(guān)系?并說明理由; ②求 SKIPIF 1 < 0 的大小(用 SKIPIF 1 < 0 表示); (2)如圖2,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則線段 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的數(shù)量關(guān)系為   SKIPIF 1 < 0  , SKIPIF 1 < 0  ?。ㄓ? SKIPIF 1 < 0 表示); (3)在(2)的條件下,把 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 逆時針旋轉(zhuǎn) SKIPIF 1 < 0 ,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接 SKIPIF 1 < 0 并延長交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 .則 SKIPIF 1 < 0   (用 SKIPIF 1 < 0 表示). 【解答】解:(1)如圖1. ① SKIPIF 1 < 0 ,理由如下:  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 同理可得: SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 即: SKIPIF 1 < 0 . 在 SKIPIF 1 < 0 與 SKIPIF 1 < 0 中,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; ② SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; (2)如圖2.  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 同理可得: SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 即: SKIPIF 1 < 0 .  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 在 SKIPIF 1 < 0 與 SKIPIF 1 < 0 中,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ;  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 故答案為: SKIPIF 1 < 0 , SKIPIF 1 < 0 ; (3)如右圖.  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 同理可得: SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 在 SKIPIF 1 < 0 與 SKIPIF 1 < 0 中,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 故答案為: SKIPIF 1 < 0 . 11.若 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 逆時針旋轉(zhuǎn) SKIPIF 1 < 0 后,與 SKIPIF 1 < 0 構(gòu)成位似圖形,則我們稱 SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”. (1)知識理解: 如圖1, SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”. ①若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則 SKIPIF 1 < 0   SKIPIF 1 < 0 ?。?②若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則 SKIPIF 1 < 0    (2)知識運用: 如圖2,在四邊形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 于點 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求證: SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”. (3)拓展提高: 如圖3, SKIPIF 1 < 0 為等邊三角形,點 SKIPIF 1 < 0 為 SKIPIF 1 < 0 的中點,點 SKIPIF 1 < 0 是 SKIPIF 1 < 0 邊上的一點,點 SKIPIF 1 < 0 為 SKIPIF 1 < 0 延長線上的一點,點 SKIPIF 1 < 0 在線段 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值. 【解答】解:(1)① SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; ② SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故答案為: SKIPIF 1 < 0 ; SKIPIF 1 < 0 ; (2) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 逆時針旋轉(zhuǎn) SKIPIF 1 < 0 的度數(shù)后與 SKIPIF 1 < 0 構(gòu)成位似圖形,  SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”; (3) SKIPIF 1 < 0 , 由題意得: SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 由勾股定理可得 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 . 12.(1)問題發(fā)現(xiàn) (1)如圖1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等邊三角形,直線 SKIPIF 1 < 0 和直線 SKIPIF 1 < 0 交于點 SKIPIF 1 < 0 . 填空:① SKIPIF 1 < 0 的度數(shù)是  SKIPIF 1 < 0  ;②線段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之間的數(shù)量關(guān)系為 ?。? (2)類比探究 如圖2, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等腰直角三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,直線 SKIPIF 1 < 0 和直線 SKIPIF 1 < 0 交于點 SKIPIF 1 < 0 .請判斷 SKIPIF 1 < 0 的度數(shù)及線段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之間的數(shù)量關(guān)系,并說明理由. (3)解決問題 如圖3,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,點 SKIPIF 1 < 0 在 SKIPIF 1 < 0 邊上, SKIPIF 1 < 0 于點 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,將 SKIPIF 1 < 0 繞著點 SKIPIF 1 < 0 在平面內(nèi)旋轉(zhuǎn),請直接寫出直線 SKIPIF 1 < 0 經(jīng)過點 SKIPIF 1 < 0 時,點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離. 【解答】解:(1)如圖1中,  SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等邊三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , 設(shè) SKIPIF 1 < 0 交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 .  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故答案為 SKIPIF 1 < 0 , SKIPIF 1 < 0 . (2)結(jié)論: SKIPIF 1 < 0 , SKIPIF 1 < 0 . 理由:如圖2中,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . (3)如圖3中,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四點共圓,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離等于 SKIPIF 1 < 0 . 如圖4中,當(dāng) SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直線上時,同法可知 SKIPIF 1 < 0 , SKIPIF 1 < 0 , 點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離等于 SKIPIF 1 < 0 . 綜上所述,點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離等于 SKIPIF 1 < 0 . 13.如圖,將 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 逆時針旋轉(zhuǎn) SKIPIF 1 < 0 后, SKIPIF 1 < 0 與 SKIPIF 1 < 0 構(gòu)成位似圖形,我們稱 SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”. (1)知識理解:兩個重合了一個頂點且邊長不相等的等邊三角形  是 (填“是”或“不是”  SKIPIF 1 < 0  “旋轉(zhuǎn)位似圖形”; 如圖1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”, ①若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則 SKIPIF 1 < 0  ??; ②若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則 SKIPIF 1 < 0  ?。?(2)知識運用: 如圖2,在四邊形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求證: SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”; (3)拓展提高: 如圖3, SKIPIF 1 < 0 為等腰直角三角形,點 SKIPIF 1 < 0 為 SKIPIF 1 < 0 中點,點 SKIPIF 1 < 0 是 SKIPIF 1 < 0 上一點, SKIPIF 1 < 0 是 SKIPIF 1 < 0 延長線上一點,點 SKIPIF 1 < 0 在線段 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 與 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求出 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的值. 【解答】解:(1)兩個重合了一個頂點且邊長不相等的等邊三角形,把其中一個三角形繞公共頂點旋轉(zhuǎn)后構(gòu)成位似圖形,故它們互為“旋轉(zhuǎn)位似圖形”; ① SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; ② SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故答案為:是; SKIPIF 1 < 0 ; SKIPIF 1 < 0 ; (2)證明: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 和 SKIPIF 1 < 0 互為“旋轉(zhuǎn)位似圖形”; (3) SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,代入 SKIPIF 1 < 0 求得: SKIPIF 1 < 0 . 如圖3,過 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 根據(jù)勾股定理,得 SKIPIF 1 < 0 ; 綜上, SKIPIF 1 < 0 , SKIPIF 1 < 0 . 14.已知正方形 SKIPIF 1 < 0 ,動點 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上運動,過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 射線 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 . (1)如圖1,在 SKIPIF 1 < 0 上取一點 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 ,求證: SKIPIF 1 < 0 ; (2)如圖2,點 SKIPIF 1 < 0 在 SKIPIF 1 < 0 延長線上,求證: SKIPIF 1 < 0 ; (3)如圖3,若把正方形 SKIPIF 1 < 0 改為矩形 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,其他條件不變,請猜想 SKIPIF 1 < 0 , SKIPIF 1 < 0 和 SKIPIF 1 < 0 的數(shù)量關(guān)系,直接寫出結(jié)論,不必證明. 【解答】(1)證明: SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 是正方形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; (2)證明:如圖2, 過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 的延長線于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 是正方形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; (3)解: SKIPIF 1 < 0 ; 證明:如圖3, 過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 是矩形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 同(1)的方法得, SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 四邊形 SKIPIF 1 < 0 是矩形,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中,根據(jù)勾股定理得, SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 15.(1)問題發(fā)現(xiàn): 如圖1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等邊三角形,點 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直線上,連接 SKIPIF 1 < 0 . ①線段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之間的數(shù)量關(guān)系為  SKIPIF 1 < 0 ??; ② SKIPIF 1 < 0 的度數(shù)為 ?。?(2)拓展探究: 如圖2, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等腰直角三角形, SKIPIF 1 < 0 ,點 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直線上,連接 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值及 SKIPIF 1 < 0 的度數(shù); (3)解決問題: 如圖3,在正方形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,若點 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,請直接寫出點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離. 【解答】解:(1)① SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等邊三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; ② SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ; 故答案為:① SKIPIF 1 < 0 ,② SKIPIF 1 < 0 ; (2) SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等腰直角三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ; (3) SKIPIF 1 < 0 點 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 點 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 為圓心, SKIPIF 1 < 0 為半徑的圓上,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 點 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 為直徑的圓上,  SKIPIF 1 < 0 如圖3,點 SKIPIF 1 < 0 是兩圓的交點,若點 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上方,連接 SKIPIF 1 < 0 ,過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,過點 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0   SKIPIF 1 < 0 ,  SKIPIF 1 < 0   SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,四邊形 SKIPIF 1 < 0 是矩形,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , 即 SKIPIF 1 < 0 , 解得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 .  SKIPIF 1 < 0 點 SKIPIF 1 < 0 到直線 SKIPIF 1 < 0 的距離為 SKIPIF 1 < 0 或 SKIPIF 1 < 0 . 16.圖形的旋轉(zhuǎn)變換是研究數(shù)學(xué)相關(guān)問題的重要手段之一.小華和小芳對等腰直角三角形的旋轉(zhuǎn)變換進行研究.如圖(1),已知 SKIPIF 1 < 0 和 SKIPIF 1 < 0 均為等腰直角三角形,點 SKIPIF 1 < 0 , SKIPIF 1 < 0 分別在線段 SKIPIF 1 < 0 , SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 . (1)觀察猜想 小華將 SKIPIF 1 < 0 繞點 SKIPIF 1 < 0 逆時針旋轉(zhuǎn),連接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,如圖(2),當(dāng) SKIPIF 1 < 0 的延長線恰好經(jīng)過點 SKIPIF 1 < 0 時, ① SKIPIF 1 < 0 的值為   SKIPIF 1 < 0 ??; ② SKIPIF 1 < 0 的度數(shù)為   度; (2)類比探究 如圖(3),小芳在小華的基礎(chǔ)上,繼續(xù)旋轉(zhuǎn) SKIPIF 1 < 0 ,連接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,設(shè) SKIPIF 1 < 0 的延長線交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 ,請求出 SKIPIF 1 < 0 的值及 SKIPIF 1 < 0 的度數(shù),并說明理由. (3)拓展延伸 若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 所在的直線垂直于 SKIPIF 1 < 0 時,請你直接寫出 SKIPIF 1 < 0 的長. 【解答】解:(1)如圖(2)中,設(shè) SKIPIF 1 < 0 交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 .  SKIPIF 1 < 0 , SKIPIF 1 < 0 都是等腰直角三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 故答案為: SKIPIF 1 < 0 ,45. (2)如圖(3)中,設(shè) SKIPIF 1 < 0 交 SKIPIF 1 < 0 于點 SKIPIF 1 < 0 .  SKIPIF 1 < 0 , SKIPIF 1 < 0 都是等腰直角三角形,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 . (3)如圖(4) SKIPIF 1 < 0 中,當(dāng) SKIPIF 1 < 0 于 SKIPIF 1 < 0 時,  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 ,  SKIPIF 1 < 0 . 如圖(4) SKIPIF 1 < 0 中,當(dāng) SKIPIF 1 < 0 時,延長 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 . 同法可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,  SKIPIF 1 < 0 , 綜上所述, SKIPIF 1 < 0 的長為 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .

英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
初中數(shù)學(xué)人教版(2024)九年級下冊電子課本

章節(jié)綜合與測試

版本: 人教版(2024)

年級: 九年級下冊

切換課文
  • 課件
  • 教案
  • 試卷
  • 學(xué)案
  • 更多
所有DOC左下方推薦
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部