【考綱要求】
1.理解對(duì)數(shù)的概念及運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù).
2.通過(guò)實(shí)例,了解對(duì)數(shù)函數(shù)的概念,能用描點(diǎn)法或借助計(jì)算工具畫(huà)具體對(duì)數(shù)函數(shù)的圖象,理解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn).
3.了解指數(shù)函數(shù)y=ax與對(duì)數(shù)函數(shù)y=lgax(a>0,且a≠1)互為反函數(shù).
【考點(diǎn)預(yù)測(cè)】
1.對(duì)數(shù)的概念
如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作x=lgaN,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù).
2.對(duì)數(shù)的性質(zhì)、運(yùn)算性質(zhì)與換底公式
(1)對(duì)數(shù)的性質(zhì):①algaN=N;②lgaab=b(a>0,且a≠1).
(2)對(duì)數(shù)的運(yùn)算性質(zhì)
如果a>0且a≠1,M>0,N>0,那么
①lga(MN)=lgaM+lgaN;
②lgaeq \f(M,N)=lgaM-lgaN;
③lgaMn=nlgaM(n∈R).
(3)換底公式:lgab=eq \f(lgcb,lgca)(a>0,且a≠1,b>0,c>0,且c≠1).
3.對(duì)數(shù)函數(shù)及其性質(zhì)
(1)概念:函數(shù)y=lgax(a>0,且a≠1)叫做對(duì)數(shù)函數(shù),其中x是自變量,定義域是(0,+∞).
(2)對(duì)數(shù)函數(shù)的圖象與性質(zhì)
4.反函數(shù)
指數(shù)函數(shù)y=ax(a>0,且a≠1)與對(duì)數(shù)函數(shù)y=lgax(a>0,且a≠1)互為反函數(shù),它們的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng).它們的定義域和值域正好互換.
【常用結(jié)論】
1.換底公式的兩個(gè)重要結(jié)論
(1)lgab=eq \f(1,lgba)(a>0,且a≠1;b>0,且b≠1).
(2)lgambn=eq \f(n,m)lgab(a>0,且a≠1;b>0;m,n∈R,且m≠0).
2.對(duì)數(shù)函數(shù)的圖象與底數(shù)大小的比較
如圖,作直線(xiàn)y=1,則該直線(xiàn)與四個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo)為相應(yīng)的底數(shù).
故0<c<d<1<a<b.
由此我們可得到以下規(guī)律:在第一象限內(nèi)從左到右底數(shù)逐漸增大.
【方法技巧】
1.在對(duì)數(shù)運(yùn)算中,先利用冪的運(yùn)算把底數(shù)或真數(shù)進(jìn)行變形,化成分?jǐn)?shù)指數(shù)冪的形式,使冪的底數(shù)最簡(jiǎn),然后用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)合并.
2.先將對(duì)數(shù)式化為同底數(shù)對(duì)數(shù)的和、差、倍數(shù)運(yùn)算,然后逆用對(duì)數(shù)的運(yùn)算法則,轉(zhuǎn)化為同底對(duì)數(shù)真數(shù)的積、商、冪再運(yùn)算.
3.ab=N?b=lgaN(a>0,且a≠1)是解決有關(guān)指數(shù)、對(duì)數(shù)問(wèn)題的有效方法,在運(yùn)算中應(yīng)注意互化.
4.在識(shí)別函數(shù)圖象時(shí),要善于利用已知函數(shù)的性質(zhì)、函數(shù)圖象上的特殊點(diǎn)(與坐標(biāo)軸的交點(diǎn)、最高點(diǎn)、最低點(diǎn)等)排除不符合要求的選項(xiàng).
5.一些對(duì)數(shù)型方程、不等式問(wèn)題常轉(zhuǎn)化為相應(yīng)的函數(shù)圖象問(wèn)題,利用數(shù)形結(jié)合法求解.
6.利用對(duì)數(shù)函數(shù)的性質(zhì),求與對(duì)數(shù)函數(shù)有關(guān)的函數(shù)值域和復(fù)合函數(shù)的單調(diào)性問(wèn)題,必須弄清三方面的問(wèn)題:一是定義域,所有問(wèn)題都必須在定義域內(nèi)討論;二是底數(shù)與1的大小關(guān)系;三是復(fù)合函數(shù)的構(gòu)成,即它是由哪些基本初等函數(shù)復(fù)合而成的.另外,解題時(shí)要注意數(shù)形結(jié)合、分類(lèi)討論、轉(zhuǎn)化與化歸思想的應(yīng)用.
二、【題型歸類(lèi)】
【題型一】對(duì)數(shù)的化簡(jiǎn)與求值
【典例1】(1)計(jì)算lg535+2lgeq \s\d9(\f(1,2))eq \r(2)-lg5eq \f(1,50)-lg514的值.
(2)計(jì)算(lg2125+lg425+lg85)(lg1258+lg254+lg52)的值.
(3)設(shè)x,y,z均為大于1的實(shí)數(shù),且z為x和y的等比中項(xiàng),則eq \f(lgz,4lgx)+eq \f(lgz,lgy)的最小值為_(kāi)_______.
【解析】(1)原式=lg5eq \f(35×50,14)+2lgeq \s\d9(\f(1,2))2eq \s\up6(\f(1,2))=lg553-1=2.
(2)原式=eq \b\lc\(\rc\)(\a\vs4\al\c1(3lg25+lg25+\f(1,3)lg25))(lg52+lg52+lg52)=eq \f(13,3)lg25×3lg52=13.
(3)因?yàn)閤,y,z均為大于1的實(shí)數(shù),所以lgx>0,lgy>0,lgz>0,又由z為x和y的等比中項(xiàng),可得z2=xy.eq \f(lgz,4lgx)+eq \f(lgz,lgy)=lgz×eq \f(4lgx+lgy,4lgx×lgy)=eq \f(1,2)lgxy×eq \f(4lgx+lgy,4lgx×lgy)=eq \f(\b\lc\(\rc\)(\a\vs4\al\c1(lgx+lgy))\b\lc\(\rc\)(\a\vs4\al\c1(4lgx+lgy)),8lgx×lgy)=eq \f(4\b\lc\(\rc\)(\a\vs4\al\c1(lgx))2+5lgx×lgy+\b\lc\(\rc\)(\a\vs4\al\c1(lgy))2,8lgx×lgy)≥eq \f(9lgx×lgy,8lgx×lgy)=eq \f(9,8).故填eq \f(9,8).
【典例2】(1)計(jì)算(lg2)2+lg2·lg50+lg25的值;
(2)計(jì)算(lg32+lg92)(lg43+lg83)的值;
(3)設(shè)函數(shù)f1(x)=x,f2(x)=lg2015x,ai=eq \f(i,2015)(i=1,2,…,2015),記Ik=|fk(a2)-fk(a1)|+|fk(a3)-fk(a2)|+…+|fk(a2015)-fk(a2014)|,k=1,2,則( )
A.I1<I2
B.I1=I2
C.I1>I2
D.I1與I2的大小關(guān)系無(wú)法確定
【解析】(1)原式=(lg2)2+(1+lg5)lg2+lg52
=(lg2+lg5+1)lg2+2lg5
=(1+1)lg2+2lg5=2(lg2+lg5)=2.
(2)原式=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(lg2,lg3)+\f(lg2,lg9)))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(lg3,lg4)+\f(lg3,lg8)))
=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(lg2,lg3)+\f(lg2,2lg3)))eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(lg3,2lg2)+\f(lg3,3lg2)))
=eq \f(3lg2,2lg3)×eq \f(5lg3,6lg2)=eq \f(5,4).
(3)∵f1(ai+1)-f1(ai)=eq \f(i+1,2015)-eq \f(i,2015)=eq \f(1,2015),
∴I1=|f1(a2)-f1(a1)|+|f1(a3)-f1(a2)|+…+|f1(a2015)-f1(a2014)|
=eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(1,2015)))×2014=eq \f(2014,2015).
∵f2(ai+1)-f2(ai)=lg2015eq \f(i+1,2015)-lg2015eq \f(i,2015)=lg2015eq \f(i+1,i)>0,
∴I2=|f2(a2)-f2(a1)|+|f2(a3)-f2(a2)|+…+|f2(a2015)-f2(a2014)|
=lg2015eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,1)×\f(3,2)×…×\f(2015,2014)))=lg20152015=1.
∴I1<I2.故選A.
【典例3】設(shè)2a=5b=m,且eq \f(1,a)+eq \f(1,b)=2,則m等于( )
A.eq \r(10) B.10 C.20 D.100
【解析】2a=5b=m,
∴l(xiāng)g2m=a,lg5m=b,
∴eq \f(1,a)+eq \f(1,b)=eq \f(1,lg2m)+eq \f(1,lg5m)=lgm2+lgm5
=lgm10=2,
∴m2=10,
∴m=eq \r(10)(舍m=-eq \r(10)).
故選A.
【題型二】對(duì)數(shù)函數(shù)的圖象及應(yīng)用
【典例1】已知函數(shù)f(x)=lga(2x+b-1)(a>0,且a≠1)的圖象如圖所示,則a,b滿(mǎn)足的關(guān)系是( )
A.0

相關(guān)試卷

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題35復(fù)數(shù)(教師版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題35復(fù)數(shù)(教師版),共12頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類(lèi)】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題39數(shù)列求和(教師版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題39數(shù)列求和(教師版),共22頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類(lèi)】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題40數(shù)列的綜合應(yīng)用(教師版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題40數(shù)列的綜合應(yīng)用(教師版),共18頁(yè)。試卷主要包含了【知識(shí)梳理】,【題型歸類(lèi)】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測(cè)試】等內(nèi)容,歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題50圓的方程(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題50圓的方程(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題48直線(xiàn)的方程(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題48直線(xiàn)的方程(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題49兩直線(xiàn)的位置關(guān)系(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題49兩直線(xiàn)的位置關(guān)系(教師版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題11對(duì)數(shù)與對(duì)數(shù)函數(shù)(Word版附解析)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類(lèi)與強(qiáng)化測(cè)試專(zhuān)題11對(duì)數(shù)與對(duì)數(shù)函數(shù)(Word版附解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專(zhuān)區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專(zhuān)業(yè)更值得信賴(lài)
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部