【考綱要求】
1.利用實(shí)物、計(jì)算機(jī)軟件等觀察空間圖形,認(rèn)識柱、錐、臺、球及簡單組合體的結(jié)構(gòu)特征,能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).
2.知道球、棱(圓)柱、棱(圓)錐、棱(圓)臺的表面積和體積的計(jì)算公式,能用公式解決簡單的實(shí)際問題.
3.能用斜二測畫法畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱及其簡單組合體)的直觀圖.
【考點(diǎn)預(yù)測】
1.空間幾何體的結(jié)構(gòu)特征
(1)多面體的結(jié)構(gòu)特征
(2)旋轉(zhuǎn)體的結(jié)構(gòu)特征
2.直觀圖
(1)畫法:常用斜二測畫法.
(2)規(guī)則:
①原圖形中x軸、y軸、z軸兩兩垂直,直觀圖中,x′軸、y′軸的夾角為45°或135°,z′軸與x′軸和y′軸所在平面垂直.
②原圖形中平行于坐標(biāo)軸的線段,直觀圖中仍分別平行于坐標(biāo)軸,平行于x軸和z軸的線段在直觀圖中保持原長度不變,平行于y軸的線段長度在直觀圖中變?yōu)樵瓉淼囊话耄?br>3.圓柱、圓錐、圓臺的側(cè)面展開圖及側(cè)面積公式
4.柱、錐、臺、球的表面積和體積
【常用結(jié)論】
1.正方體與球的切、接常用結(jié)論:正方體的棱長為a,球的半徑為R,
(1)若球?yàn)檎襟w的外接球,則2R=eq \r(3)a;
(2)若球?yàn)檎襟w的內(nèi)切球,則2R=a;
(3)若球與正方體的各棱相切,則2R=eq \r(2)a.
2.長方體的共頂點(diǎn)的三條棱長分別為a,b,c,外接球的半徑為R,則2R=eq \r(a2+b2+c2).
3.正四面體的外接球的半徑R=eq \f(\r(6),4)a,內(nèi)切球的半徑r=eq \f(\r(6),12)a,其半徑R∶r=3∶1(a為該正四面體的棱長).
4.直觀圖與原平面圖形面積間關(guān)系S直觀圖=eq \f(\r(2),4)S原圖形.
【方法技巧】
1.空間幾何體結(jié)構(gòu)特征的判斷技巧
(1)緊扣結(jié)構(gòu)特征是判斷的關(guān)鍵,熟悉空間幾何體的結(jié)構(gòu)特征,依據(jù)條件構(gòu)建幾何模型,在條件不變的情況下,變換模型中的線面關(guān)系或增加線、面等基本元素,然后再依據(jù)題意判定.
(2)通過反例對結(jié)構(gòu)特征進(jìn)行辨析,即要說明一個(gè)命題是錯(cuò)誤的,只要舉出一個(gè)反例即可.
2.在斜二測畫法中,要確定關(guān)鍵點(diǎn)及關(guān)鍵線段.“平行于x軸的線段平行性不變,長度不變;平行于y軸的線段平行性不變,長度減半.”
3.按照斜二測畫法得到的平面圖形的直觀圖,其面積與原圖形的面積的關(guān)系:
S直觀圖=eq \f(\r(2),4)S原圖形.
4.幾何體的表面展開圖可以有不同的形狀,應(yīng)多實(shí)踐,觀察并大膽想象立體圖形與表面展開圖的關(guān)系,一定先觀察立體圖形的每一個(gè)面的形狀.
5.空間幾何體表面積的求法
(1)旋轉(zhuǎn)體的表面積問題注意其軸截面及側(cè)面展開圖的應(yīng)用,并弄清底面半徑、母線長與對應(yīng)側(cè)面展開圖中邊的關(guān)系.
(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積注意銜接部分的處理.
6.求空間幾何體的體積的常用方法
(1)公式法:規(guī)則幾何體的體積問題,直接利用公式進(jìn)行求解;
(2)割補(bǔ)法:把不規(guī)則的幾何體分割成規(guī)則的幾何體,或者把不規(guī)則的幾何體補(bǔ)成規(guī)則的幾何體;
(3)等體積法:通過選擇合適的底面來求幾何體體積的一種方法,特別是三棱錐的體積.
7.求解多面體的外接球時(shí),經(jīng)常用到截面圖.如圖所示,設(shè)球O的半徑為R,截面圓O′的半徑為r,M為截面圓上任意一點(diǎn),球心O到截面圓O′的距離為d,則在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.
8.求解球的內(nèi)接正方體、長方體等問題的關(guān)鍵是把握球的直徑即是幾何體的體對角線.
9.“切”的問題處理規(guī)律
(1)找準(zhǔn)切點(diǎn),通過作過球心的截面來解決.
(2)體積分割是求內(nèi)切球半徑的通用方法.
二、【題型歸類】
【題型一】基本立體圖形
【典例1】(多選)下面關(guān)于空間幾何體的敘述正確的是( )
A.底面是正多邊形的棱錐是正棱錐
B.用平面截圓柱得到的截面只能是圓和矩形
C.長方體是直平行六面體
D.存在每個(gè)面都是直角三角形的四面體
【典例2】一個(gè)平面四邊形的斜二測畫法的直觀圖是一個(gè)邊長為a的正方形,則原平面四邊形的面積等于( )
A.eq \f(\r(2),4)a2 B.2eq \r(2)a2 C.eq \f(\r(2),2)a2 D.eq \f(2\r(2),3)a2
【典例3】如圖,一立在水平地面上的圓錐形物體的母線長為4 m,一只小蟲從圓錐的底面圓上的點(diǎn)P出發(fā),繞圓錐表面爬行一周后回到點(diǎn)P處.若該小蟲爬行的最短路程為4eq \r(3) m,則圓錐底面圓的半徑等于______ m.
【題型二】表面積與體積
【典例1】如圖,四面體的各個(gè)面都是邊長為1的正三角形,其三個(gè)頂點(diǎn)在一個(gè)圓柱的下底面圓周上,另一個(gè)頂點(diǎn)是上底面的圓心,則圓柱的表面積是( )
A.eq \f(?\r(2)+2?π,3) B.eq \f(?9\r(2)+8?π,12)
C.eq \f(2?\r(2)+1?π,3) D.eq \f(?\r(2)+2?π,2)
【典例2】如圖所示,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2eq \r(2),AD=2,則四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積為________.
【典例3】正四棱臺的上、下底面的邊長分別為2,4,側(cè)棱長為2,則其體積為( )
A.20+12eq \r(3) B.28eq \r(2)
C.eq \f(56,3) D.eq \f(28\r(2),3)
【題型三】與球有關(guān)的切、接問題
【典例1】圓臺上、下底面的圓周都在一個(gè)直徑為10的球面上,其上、下底面半徑分別為4和5,則該圓臺的體積為________.
【典例2】已知圓錐的底面半徑為1,母線長為3,則該圓錐內(nèi)半徑最大的球的體積為________.
【典例3】已知正三棱錐S-ABC的側(cè)棱長為4eq \r(3),底面邊長為6,則該正三棱錐外接球的表面積是________.
三、【培優(yōu)訓(xùn)練】
【訓(xùn)練一】(多選)沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上、下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8 cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的eq \f(2,3)(細(xì)管長度忽略不計(jì)),假設(shè)該沙漏每秒鐘漏0.02 cm3的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆,以下結(jié)論正確的是(π≈3.14)( )
A.沙漏中的細(xì)沙體積為eq \f(1 024π,81) cm3
B.沙漏的體積是128π cm3
C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4 cm
D.該沙漏的一個(gè)沙時(shí)大約是1 985秒
【訓(xùn)練二】若E,F(xiàn)是三棱柱ABC-A1B1C1側(cè)棱BB1和CC1上的點(diǎn),且B1E=CF,三棱柱的體積為m,則四棱錐A-BEFC的體積為________.
【訓(xùn)練三】在半徑為15的球O內(nèi)有一個(gè)底面邊長為12eq \r(3)的內(nèi)接正三棱錐A-BCD,則此正三棱錐的體積為________.
【訓(xùn)練四】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了一條原理:“冪勢既同,則積不容異”.意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體.如圖,將底面直徑都為2b,高皆為a的半橢球體和已被挖去了圓錐體的圓柱放置于同一平面β上,用平行于平面β且與平面β任意距離d處的平面截這兩個(gè)幾何體,可橫截得到S圓及S環(huán)兩截面.可以證明S圓=S環(huán)總成立.據(jù)此,短半軸長為1,長半軸長為3的橢球體的體積是________.
【訓(xùn)練五】我國古代數(shù)學(xué)著作《算法統(tǒng)宗》第八卷“商功”第五章撰述:“芻蕘(chú rá ):倍下長,加上長,以廣乘之,又以高乘,用六歸之.如屋脊:上斜下平.”劉徽注曰:止斬方亭兩邊,合之即“芻甍”之形也.即將方臺的兩邊切下來合在一起就是“芻甍”,是一種五面體(如圖):矩形ABCD,棱EF∥AB,AB=4,EF=2,△ADE和△BCF都是邊長為2的等邊三角形,則此幾何體的表面積為______,體積為______.
【訓(xùn)練六】在半徑為15的球O內(nèi)有一個(gè)底面邊長為12eq \r(3)的內(nèi)接正三棱錐A-BCD,求此正三棱錐的體積.
四、【強(qiáng)化測試】
【單選題】
1. 下列說法中,正確的是( )
A.棱柱的側(cè)面可以是三角形
B.若棱柱有兩個(gè)側(cè)面是矩形,則該棱柱的其他側(cè)面也是矩形
C.正方體的所有棱長都相等
D.棱柱的所有棱長都相等
2. 一個(gè)菱形的邊長為4 cm,一內(nèi)角為60°,用斜二測畫法畫出的這個(gè)菱形的直觀圖的面積為( )
A.2eq \r(3) cm2 B.2eq \r(6) cm2
C.4eq \r(6) cm2 D.8eq \r(3) cm2
3. 現(xiàn)有同底等高的圓錐和圓柱,已知圓柱的軸截面是邊長為2的正方形,則圓錐的側(cè)面積為( )
A.3π B.eq \f(3π,2) C.eq \f(\r(5)π,2) D.eq \r(5)π
4. 在我國古代數(shù)學(xué)名著《數(shù)學(xué)九章》中有這樣一個(gè)問題:“今有木長二丈四尺,圍之五尺.葛生其下,纏本兩周,上與木齊,問葛長幾何?”意思是“圓木長2丈4尺,圓周長為5尺,葛藤從圓木的底部開始向上生長,繞圓木兩周,剛好頂部與圓木平齊,問葛藤最少長多少尺?”(注:1丈等于10尺),則這個(gè)問題中,葛藤長的最小值為( )
A.2丈4尺 B.2丈5尺
C.2丈6尺 D.2丈8尺
5. 在梯形ABCD中,∠ABC=eq \f(π,2),AD∥BC,BC=2AD=2AB=2,則將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為( )
A.(5+eq \r(2))π
B.(4+eq \r(2))π
C.(5+2eq \r(2))π
D.(3+eq \r(2))π
6. 玉琮是一種內(nèi)圓外方的筒型玉器,它與玉璧、玉圭、玉璋、玉璜、玉琥被稱為“六器”,是古人用于祭祀神祇的一種禮器.《周禮》中載有“以玉作六器,以禮天地四方,以蒼璧禮天,以黃琮禮地”等文.如圖為齊家文化玉琮,該玉琮中方內(nèi)空,形狀對稱,圓筒內(nèi)徑2.0 cm,外徑2.4 cm,筒高6.0 cm,方高4.0 cm,則其體積約為(單位:cm3)( )
A.23.04-3.92π B.34.56-3.92π
C.34.56-3.12π D.23.04-3.12π
7. 已知表面積為12π的圓柱的上下底面的中心分別為O1,O2.若過直線O1O2的平面截該圓柱所得的截面是正方形,則O1O2=( )
A.2eq \r(3) B.2eq \r(2) C.eq \r(3) D.eq \r(2)
8. 在長方體ABCD-A1B1C1D1中,四邊形ABCD是邊長為2的正方形,D1B與DC所成的角是60°,則長方體的外接球的表面積是( )
A.16π B.8π
C.4π D.4eq \r(2)π
【多選題】
9. 下列結(jié)論中正確的是( )
A.由五個(gè)面圍成的多面體只能是三棱柱
B.正棱臺的對角面一定是等腰梯形
C.圓柱側(cè)面上的直線段都是圓柱的母線
D.各個(gè)面都是正方形的四棱柱一定是正方體
10. 已知A,B,C三點(diǎn)均在球O的表面上,AB=BC=CA=2,且球心O到平面ABC的距離等于球半徑的eq \f(1,3),則下列結(jié)論正確的是( )
A.球O的表面積為6π
B.球O的內(nèi)接正方體的棱長為1
C.球O的外切正方體的棱長為eq \f(4,3)
D.球O的內(nèi)接正四面體的棱長為2
11. 將正三棱錐P-ABC置于水平反射鏡面上,得一“倒影三棱錐”P-ABC-Q,如圖.下列關(guān)于該“倒影三棱錐”的說法中,正確的有( )
A.PQ⊥平面ABC
B.若P,A,B,C在同一球面上,則Q也在該球面上
C.若該“倒影三棱錐”存在外接球,則AB=eq \r(2)PA
D.若AB=eq \f(\r(6),2)PA,則PQ的中點(diǎn)必為“倒影三棱錐”外接球的球心
12. 已知圓錐的頂點(diǎn)為P,母線長為2,底面半徑為eq \r(3),A,B為底面圓周上兩個(gè)動點(diǎn)(A與B不重合),則下列說法正確的是( )
A.圓錐的體積為π
B.三角形PAB為等腰三角形
C.三角形PAB面積的最大值為eq \r(3)
D.直線PA與圓錐底面所成角的大小為eq \f(π,6)
【填空題】
13. 一個(gè)六棱錐的體積為2eq \r(3),其底面是邊長為2的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為________.
14. 已知△ABC是面積為eq \f(9\r(3),4)的等邊三角形,且其頂點(diǎn)都在球O的球面上.若球O的表面積為16π,則O到平面ABC的距離為________.
15. 如圖,六角螺帽毛坯是由一個(gè)正六棱柱挖去一個(gè)圓柱所構(gòu)成的.已知螺帽的底面正六邊形的邊長為2 cm,高為2 cm,內(nèi)孔半徑為0.5 cm,則此六角螺帽毛坯的體積是________cm3.
16. 如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D,E,F(xiàn)為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D,E,F(xiàn)重合,得到三棱錐.當(dāng)△ABC的邊長變化時(shí),所得三棱錐體積(單位:cm3)的最大值為________.
17. 如圖所示是古希臘數(shù)學(xué)家阿基米德的墓碑文,墓碑上刻著一個(gè)圓柱,圓柱內(nèi)有一個(gè)內(nèi)切球,這個(gè)球的直徑恰好與圓柱的高相等,相傳這個(gè)圖形表達(dá)了阿基米德最引以為豪的發(fā)現(xiàn).我們來重溫這個(gè)偉大發(fā)現(xiàn),圓柱的體積與球的體積之比為________,圓柱的表面積與球的表面積之比為________.
18. 小張周末準(zhǔn)備去探望奶奶,到商店買了一盒點(diǎn)心,為了美觀起見,售貨員用彩繩對點(diǎn)心盒做了一個(gè)捆扎(如圖①所示),并在角上配了一個(gè)花結(jié).彩繩與長方體點(diǎn)心盒均相交于棱的四等分點(diǎn)處.設(shè)這種捆扎方法所用繩長為l1,一般的十字捆扎(如圖②所示)所用繩長為l2.若點(diǎn)心盒的長、寬、高之比為2∶2∶1,則eq \f(l1,l2)的值為________.
圖① 圖②名稱
棱柱
棱錐
棱臺
圖形
底面
互相平行
且全等
多邊形
互相平行
且相似
側(cè)棱
平行且相等
相交于一點(diǎn)
但不一定相等
延長線交
于一點(diǎn)
側(cè)面形狀
平行四邊形
三角形
梯形
名稱
圓柱
圓錐
圓臺

圖形
母線
互相平行且相等,垂直于底面
相交于一點(diǎn)
延長線交于一點(diǎn)
軸截面
矩形
等腰三角形
等腰梯形

側(cè)面展開圖
矩形
扇形
扇環(huán)
圓柱
圓錐
圓臺
側(cè)面展開圖
側(cè)面積公式
S圓柱側(cè)=2πrl
S圓錐側(cè)=πrl
S圓臺側(cè)=π(r1+r2)l
名稱
幾何體
表面積
體積
柱體
S表=S側(cè)+2S底
V=Sh
錐體
S表=S側(cè)+S底
V=eq \f(1,3)Sh
臺體
S表=S側(cè)+S上+S下
V=eq \f(1,3)(S上+S下+eq \r(S上S下))h

S表=4πR2
V=eq \f(4,3)πR3

相關(guān)試卷

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題43直線平面平行的判定與性質(zhì)(學(xué)生版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題43直線平面平行的判定與性質(zhì)(學(xué)生版),共10頁。試卷主要包含了【知識梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測試】等內(nèi)容,歡迎下載使用。

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題50圓的方程(學(xué)生版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題50圓的方程(學(xué)生版),共8頁。試卷主要包含了【知識梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測試】等內(nèi)容,歡迎下載使用。

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題49兩直線的位置關(guān)系(學(xué)生版):

這是一份2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題49兩直線的位置關(guān)系(學(xué)生版),共8頁。試卷主要包含了【知識梳理】,【題型歸類】,【培優(yōu)訓(xùn)練】,【強(qiáng)化測試】等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題46向量法求空間角(學(xué)生版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題46向量法求空間角(學(xué)生版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題48直線的方程(學(xué)生版)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題48直線的方程(學(xué)生版)

專題8.1  基本立體圖形及幾何體的表面積與體積-2024年高考數(shù)學(xué)一輪復(fù)習(xí)《考點(diǎn)?題型 ?技巧》精講與精練

專題8.1 基本立體圖形及幾何體的表面積與體積-2024年高考數(shù)學(xué)一輪復(fù)習(xí)《考點(diǎn)?題型 ?技巧》精講與精練

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題41基本立體圖形、表面積及體積(Word版附解析)

2024年新高考數(shù)學(xué)一輪復(fù)習(xí)題型歸類與強(qiáng)化測試專題41基本立體圖形、表面積及體積(Word版附解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部