§6.5 數(shù)列求和考試要求 1.熟練掌握等差、等比數(shù)列的前n項(xiàng)和公式.2.掌握非等差數(shù)列、非等比數(shù)列求和的幾種常用方法.知識梳理數(shù)列求和的幾種常用方法1.公式法直接利用等差數(shù)列、等比數(shù)列的前n項(xiàng)和公式求和.(1)等差數(shù)列的前n項(xiàng)和公式:Sn______________________________.(2)等比數(shù)列的前n項(xiàng)和公式:Sn2.分組求和法與并項(xiàng)求和法(1)分組求和法若一個(gè)數(shù)列是由若干個(gè)等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時(shí)可用分組求和法,分別求和后相加減.(2)并項(xiàng)求和法一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an(1)nf(n)類型,可采用兩項(xiàng)合并求解.3.錯(cuò)位相減法如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和即可用此法來求,如等比數(shù)列的前n項(xiàng)和公式就是用此法推導(dǎo)的.4.裂項(xiàng)相消法把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得其和.常見的裂項(xiàng)技巧(1).(2).(3).(4).(5).常用結(jié)論常用求和公式(1)1234n.(2)1357(2n1)n2.(3)122232n2.(4)132333n32.思考辨析判斷下列結(jié)論是否正確(請?jiān)诶ㄌ栔写?/span>“√”“×”)(1)如果數(shù)列{an}為等比數(shù)列,且公比不等于1,則其前n項(xiàng)和Sn.(  )(2)Sna2a23a3nan時(shí),只要把上式等號兩邊同時(shí)乘a即可根據(jù)錯(cuò)位相減法求得.(  )(3)已知等差數(shù)列{an}的公差為d,則有. (  )(4)sin2sin2sin2sin288°sin289°44.5.(  )教材改編題1.已知函數(shù)f(n)anf(n)f(n1),則a1a2a3a100等于(  )A0  B100  C.-100  D10 2002.?dāng)?shù)列{an}的前n項(xiàng)和為Sn.an,則S5等于(  )A1  B.  C.  D.3Sn等于(  )A.   B.C.   D. 題型一 分組求和與并項(xiàng)求和1 (2023·菏澤模擬)已知數(shù)列{an}中,a11,它的前n項(xiàng)和Sn滿足2Snan12n11.(1)證明:數(shù)列為等比數(shù)列;(2)S1S2S3S2n.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________延伸探究 在本例(2)中,如何求S1S2S3Sn?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 (1)若數(shù)列{cn}的通項(xiàng)公式為cnan±bn,且{an},{bn}為等差或等比數(shù)列,可采用分組求和法求數(shù)列{cn}的前n項(xiàng)和.(2)若數(shù)列{cn}的通項(xiàng)公式為cn其中數(shù)列{an},{bn}是等比數(shù)列或等差數(shù)列,可采用分組求和法求{cn}的前n項(xiàng)和.跟蹤訓(xùn)練1 記數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn2an2n1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)bn(1)n·log2,求數(shù)列{bn}的前n項(xiàng)和Tn.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二 錯(cuò)位相減法求和2 (12)(2021·全國乙卷)設(shè){an}是首項(xiàng)為1的等比數(shù)列,數(shù)列{bn}滿足bn.已知a1,3a2,9a3成等差數(shù)列.(1){an}{bn}的通項(xiàng)公式; [切入點(diǎn):設(shè)基本量q](2)SnTn分別為{an}{bn}的前n項(xiàng)和.證明:Tn<.[關(guān)鍵點(diǎn):bnn·n]思維升華 (1)如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項(xiàng)和時(shí),常采用錯(cuò)位相減法.(2)錯(cuò)位相減法求和時(shí),應(yīng)注意:在寫出SnqSn的表達(dá)式時(shí)應(yīng)特別注意將兩式錯(cuò)項(xiàng)對齊,以便于下一步準(zhǔn)確地寫出SnqSn的表達(dá)式.應(yīng)用等比數(shù)列求和公式時(shí)必須注意公比q是否等于1,如果q1,應(yīng)用公式Snna1.跟蹤訓(xùn)練2 (2021·浙江)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-,且4Sn13Sn9(nN*)(1)求數(shù)列{an}的通項(xiàng)公式;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)設(shè)數(shù)列{bn}滿足3bn(n4)an0(nN*),記{bn}的前n項(xiàng)和為Tn.Tnλbn,對任意nN*恒成立,求實(shí)數(shù)λ的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型三 裂項(xiàng)相消法求和3 (2022·新高考全國)Sn為數(shù)列{an}的前n項(xiàng)和,已知a11,是公差為的等差數(shù)列.(1){an}的通項(xiàng)公式;(2)證明:<2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 裂項(xiàng)相消法的原則及規(guī)律(1)裂項(xiàng)原則一般是前面裂幾項(xiàng),后面就裂幾項(xiàng),直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止.(2)消項(xiàng)規(guī)律消項(xiàng)后前面剩幾項(xiàng),后面就剩幾項(xiàng),前面剩第幾項(xiàng),后面就剩倒數(shù)第幾項(xiàng).跟蹤訓(xùn)練3 (2022·湛江模擬)已知數(shù)列{an}是等比數(shù)列,且8a3a6a2a536.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn,并證明:Tn<.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

相關(guān)試卷

2024年高考數(shù)學(xué)第一輪復(fù)習(xí)專題訓(xùn)練第六章 §6.5 數(shù)列求和:

這是一份2024年高考數(shù)學(xué)第一輪復(fù)習(xí)專題訓(xùn)練第六章 §6.5 數(shù)列求和,共5頁。

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 §6.5 數(shù)列求和:

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 §6.5 數(shù)列求和,共3頁。試卷主要包含了已知數(shù)列{an},定義,給出以下條件等內(nèi)容,歡迎下載使用。

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 §6.5 數(shù)列求和(一)(附答單獨(dú)案解析):

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 §6.5 數(shù)列求和(一)(附答單獨(dú)案解析),共2頁。

英語朗讀寶

相關(guān)試卷 更多

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
  • 所屬專輯70份
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部