§6.7 子數(shù)列問題 子數(shù)列問題包括數(shù)列中的奇偶項、公共數(shù)列以及分段數(shù)列,是近幾年高考的重點和熱點,一般方法是構(gòu)造新數(shù)列,利用新數(shù)列的特征(等差、等比或其他特征)求解原數(shù)列.題型一 奇數(shù)項與偶數(shù)項1 (2023·南通模擬)在數(shù)列{an}中,an(1)a1a2,a3(2)求數(shù)列{an}的前n項和Sn.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 解答與奇偶項有關(guān)的求和問題的關(guān)鍵(1)弄清n為奇數(shù)或偶數(shù)時數(shù)列的通項公式.(2)弄清n為奇數(shù)時數(shù)列前n項中奇數(shù)項與偶數(shù)項的個數(shù).跟蹤訓(xùn)練1 (2021·新高考全國)已知數(shù)列{an}滿足a11,an1(1)bna2n,寫出b1b2,并求數(shù)列{bn}的通項公式;(2){an}的前20項和.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二 兩數(shù)列的公共項2 數(shù)列{an}{bn}的通項公式分別為an4n1,bn3n2,它們的公共項由小到大排列組成數(shù)列{cn},求數(shù)列{cn}的通項公式.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 解決兩個等差數(shù)列的公共項問題時,有兩種方法:(1)不定方程法:列出兩個項相等的不定方程,利用數(shù)論中的整除知識,求出符合條件的項,并解出相應(yīng)的通項公式;(2)周期法:即尋找下一項.通過觀察找到首項后,從首項開始向后,逐項判斷變化較大(如公差的絕對值大)的數(shù)列中的項是否為另一個數(shù)列中的項,并找到規(guī)律(周期),分析相鄰兩項之間的關(guān)系,從而得到通項公式.跟蹤訓(xùn)練2 (1)已知數(shù)列{an},{bn}的通項公式分別為an4n2(1n100,nN*),bn6n4(nN*),由這兩個數(shù)列的公共項按從小到大的順序組成一個新的數(shù)列{cn},則數(shù)列{cn}的各項之和為(  )A6 788   B6 800C6 812   D6 824(2)我國古代數(shù)學(xué)名著《孫子算經(jīng)》載有一道數(shù)學(xué)問題:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩二,七七數(shù)之剩二,問物幾何?根據(jù)這一數(shù)學(xué)問題,所有被3除余2的自然數(shù)從小到大排列組成數(shù)列{an},所有被5除余2的自然數(shù)從小到大排列組成數(shù)列{bn},把{an}{bn}的公共項從小到大排列得到數(shù)列{cn},則(  )Aa3b5c3   Bb28c10Ca5b2>c8   Dc9b9a26題型三 分段數(shù)列3 (1)Sn為數(shù)列{an}的前n項和,Sn,則an________.聽課記錄:______________________________________________________________________________________________________________________________________(2)已知數(shù)列{an}是公差不為0的等差數(shù)列,a1,數(shù)列{bn}是等比數(shù)列,且b1a1,b2=-a3,b3a4,數(shù)列{bn}的前n項和為Sn.求數(shù)列{bn}的通項公式;設(shè)cn{cn}的前n項和Tn.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 (1)利用等差數(shù)列的通項公式與等比中項性質(zhì)列式可解得等差數(shù)列的公差和等比數(shù)列的公比,進(jìn)而可得所求通項公式.(2)n分類討論,結(jié)合等差數(shù)列與等比數(shù)列的求和公式可得所求和.跟蹤訓(xùn)練3 (1)已知數(shù)列{an}滿足an若數(shù)列{an}的前n項和為Sn,則當(dāng)λ1時,S11等于(  )A.   B.C.   D.(2)已知數(shù)列:11,2,1,2,4,1,2,4,81,24,8,16,即此數(shù)列第一項是20,接下來兩項是20,21,再接下來三項是2021,22,依此類推,設(shè)Sn是此數(shù)列的前n項和,則S2 024等于(  )A264190   B263190C26462   D26362 

相關(guān)試卷

2024年高考數(shù)學(xué)第一輪復(fù)習(xí)講義第六章培優(yōu)課6.7 子數(shù)列問題(學(xué)生版+解析):

這是一份2024年高考數(shù)學(xué)第一輪復(fù)習(xí)講義第六章培優(yōu)課6.7 子數(shù)列問題(學(xué)生版+解析),共15頁。

2024年高考數(shù)學(xué)第一輪復(fù)習(xí)專題訓(xùn)練第六章 §6.7 子數(shù)列問題[培優(yōu)課]:

這是一份2024年高考數(shù)學(xué)第一輪復(fù)習(xí)專題訓(xùn)練第六章 §6.7 子數(shù)列問題[培優(yōu)課],共2頁。

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 培優(yōu)課 §6.7 子數(shù)列問題:

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 培優(yōu)課 §6.7 子數(shù)列問題,共3頁。試卷主要包含了韓信采用下述點兵方法等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 培優(yōu)課 §6.8 子數(shù)列問題(附答單獨(dú)案解析)

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第六章 培優(yōu)課 §6.8 子數(shù)列問題(附答單獨(dú)案解析)

(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測第6章§6.7子數(shù)列問題[培優(yōu)課](含解析)

(新高考)高考數(shù)學(xué)一輪復(fù)習(xí)講練測第6章§6.7子數(shù)列問題[培優(yōu)課](含解析)

備戰(zhàn)2024年高考數(shù)學(xué)大一輪復(fù)習(xí)(人教A版-理)第六章 培優(yōu)課 §6.7 子數(shù)列問題

備戰(zhàn)2024年高考數(shù)學(xué)大一輪復(fù)習(xí)(人教A版-理)第六章 培優(yōu)課 §6.7 子數(shù)列問題

2024高考數(shù)學(xué)一輪復(fù)習(xí)講義(步步高版)第六章 §6.7 子數(shù)列問題[培優(yōu)課]

2024高考數(shù)學(xué)一輪復(fù)習(xí)講義(步步高版)第六章 §6.7 子數(shù)列問題[培優(yōu)課]

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯誤

手機(jī)驗證碼 獲取驗證碼

手機(jī)驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部