
我們學過哪些判定三角形相似的方法?
各角對應相等,各邊對應成比例的兩個三角形相似.
(2)平行于三角形一邊的直線與其他兩邊(或兩邊的延長線) 相交,所構(gòu)成的三角形與原三角形相似.
兩角分別相等的兩個三角形相似.
(3) 三角形相似的判定定理:
兩邊成比例且夾角相等的兩個三角形相似.
三角形相似的判定定理3
畫 △A′B′C′,使它的各邊長都是△ABC 各邊長的k倍,度量這兩個三角形的角,它們分別相等嗎?
∠A=∠A',∠B=∠B',∠C=∠C'.
△ABC∽△A'B'C'
已知:如圖,△ABC和△A'B'C'中,
求證:△ABC∽△A'B'C'.
證明:在線段 A'B '(或延長線) 上截取 A'D=AB,過點 D 作 DE∥B'C' ,交A'C'于點 E.
∴ DE=BC,A'E=AC.
∴△A′DE≌△ABC,
∴△ABC∽△A'B'C'.
用符號語言表示為: 在?ABC和?A'B'C'中, 如果
那么?ABC∽?A'B'C'.
解:(1)∠1與∠2相等.在△ABC和△AED中,
∴△ABC∽△AED(三邊成比例的兩個三角形相似).∴∠BAC=∠EAD(相似三角形的對應角相等).∴∠1=∠2.
(2)△ABE與△ACD相似.
在△ABE與△ACD中,
∴△ABE∽△ACD(兩邊成比例且夾角相等的兩個三角形相似).
1.已知△ABC的三邊長分別為6 cm,7.5 cm,9 cm,△DEF的一邊長為4 cm,當另兩邊的長是下列哪一組時,這兩個三角形相似( )A.2 cm,3 cm B.4 cm,5 cmC.5 cm,6 cm D.6 cm,7 cm
3.在三角形紙片ABC中,AB=8,BC=4,AC=6,按下列方法沿虛線剪下,能使陰影部分的三角形與△ABC相似的是( )
4.如圖,在△ABC中,AB=25,BC=40,AC=20;在△ADE中,AE=12,AD=15,DE=24.試判斷這兩個三角形是否相似,并說明理由.
∴△ABC∽△ADE.
這是一份2021學年6.4 探索三角形相似的條件教學課件ppt,共18頁。PPT課件主要包含了情境導入,三角形相似的判定,1定義,三角形的重心等內(nèi)容,歡迎下載使用。
這是一份數(shù)學九年級下冊6.4 探索三角形相似的條件教學ppt課件,共18頁。PPT課件主要包含了復習引入,1定義,∴ANDF等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學蘇科版九年級下冊6.4 探索三角形相似的條件教學課件ppt,共18頁。PPT課件主要包含了復習引入,1定義等內(nèi)容,歡迎下載使用。
注冊成功