《4.1 指數(shù)》教學設計第一課時   n次方根一、教材分析本小節(jié)內(nèi)容選自《普通高中數(shù)學必修第一冊》人教A版(2019)第《指數(shù)函數(shù)與對數(shù)函數(shù)》的《4.1 指數(shù)》。以下是本節(jié)兩個課時的安排: 第一課時第二課時課時內(nèi)容n次方根指數(shù)冪及其運算所在位置教材第104教材第105新教材內(nèi)容分析n次方根與分數(shù)指數(shù)冪相關概念與性質(zhì)的學習,是進一步學習指數(shù)函數(shù)的基礎和保證,指數(shù)函數(shù)是以指數(shù)作為自變量的一類重要的函數(shù),其定義域是實數(shù)集,因此我們非常有必要將初中所學整數(shù)指數(shù)冪順理成章的推廣到實數(shù)指數(shù)冪. 核心素養(yǎng)培養(yǎng)通過本節(jié)內(nèi)容的學習與運用,可以提升學生通過類比、概括、歸納進行知識拓廣的能力,培養(yǎng)學生自主鉆研、探究嘗試、抽象總結(jié)、思維推理的良好學習習慣,達成學生數(shù)學抽象、邏輯推理與數(shù)學運算的核心素養(yǎng)。 教學主線                        根式的性質(zhì)、實數(shù)指數(shù)冪的運算 二、學情分析    針對本節(jié)知識內(nèi)容和學生認知水平而言,初中已經(jīng)學習了整數(shù)指數(shù)冪、平方根和立方根等知識,有了這些儲備知識作為生長點,就可以再一次回顧由正整數(shù)指數(shù)冪到整數(shù)指數(shù)冪的擴充過程,非常自然地一個想法就是將整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,再進一步推廣到實數(shù)指數(shù)冪,也將平方根、立方根推廣到n次方根,并找到n次方根與分數(shù)指數(shù)冪的關系。一、學習目標1. 理解n次方根、n次根式的概念,達成數(shù)學抽象的核心素養(yǎng).2.能正確運用根式性質(zhì)化簡求值,培養(yǎng)數(shù)學運算的核心素養(yǎng).二、教學重難點重點:根式的概念n次根式的性質(zhì)。難點:n次根式的性質(zhì)。 三、教學過程(一)新知導入1. 創(chuàng)設情境,生成問題公元前五世紀,古希臘有一個數(shù)學學派名叫畢達哥拉斯學派,其學派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發(fā)現(xiàn)這一長度既不能用整數(shù),也不能用分數(shù)來表示,希帕索斯的發(fā)現(xiàn)導致了數(shù)學史上第一個無理數(shù)的誕生.希帕索斯【想一想】根據(jù)初中所學知識,思考一下邊長為1的正方形的對角線長是如何計算出來的呢?【提示】根據(jù)勾股定理正方形的對角線長為. 探索交流,解決問題【問題1】 (1)若x2=3,這樣的x有幾個?它們叫做3的什么?怎么表示?若呢?(2)若,這樣的x有幾個?它們叫做3的什么?怎么表示?若呢?(3),這樣的x有幾個?它們叫做3的什么?怎么表示?若呢?(4),這樣的x有幾個?它們叫做3的什么?怎么表示?若呢? 【提示】 (1)若,這樣的x2個,它們都稱為3的平方根,記作±;,這樣的x不存在.(2)若,這樣的x1個,它叫做3方根,記作;,這樣的x也只有1個,它也叫做3方根,記作.(3),這樣的x2個,它們都稱為3四次方根,記作;,這樣的x不存在.(4)若,這樣的x1個,它叫做3五次方根,記作;,這樣的x也只1個,它也叫做3五次方根,記作.【設計意圖】通過這些小問題思考與回答,讓學生充分體驗從思考、分析到類比的過程,達成數(shù)學抽象的核心素養(yǎng)。  (二)n次方根 1.an次方根的定義一般地,如果xna,那么x叫做an次方根,其中n>1,且nN*.2.an次方根的表示 求解an次方根時要注意對n的奇偶性討論n的奇偶性an次方根的表示符號a的取值范圍n為奇數(shù)Rn為偶數(shù)±[0,+)【做一做】 1.10的平方根為________.2.2435次方根________.3(多選題)下列四個命題中正確的是(  A.正數(shù)的偶次方根是一個正數(shù)    B.正數(shù)的奇次方根是一個正數(shù)C.負數(shù)的偶次方根是一個負數(shù)  D.負數(shù)的奇次方根是一個負數(shù)【答案】1.   2.3  3BD【設計意圖】通過問題的設置與探究,使學生深入理解n次方根的概念,培養(yǎng)數(shù)學抽象的核心素養(yǎng)。(三)根式【想一想】根據(jù)n次方根的定義,當n為奇數(shù)時,是否對任意實數(shù)a都存在n次方根?n為偶數(shù)呢?【提示】n為奇數(shù)時,對任意實數(shù)a,都存在n次方根,可表示為,但當n為偶數(shù)時不是,因為當a<0時,a沒有n次方根;當a>0時,a才有n次方根,可表示為±.1.根式的概念式子叫做根式,這里n叫做根指數(shù),a叫做被開方數(shù).2.根式的性質(zhì) 根式的性質(zhì)是化簡根式的重要依據(jù)(1)負數(shù)沒有偶次方根.(2)0的任何次方根都是0,記作0.(3)()na(nN*,且n>1).(4)a(n為大于1的奇數(shù)).(5)|a|(n為大于1的偶數(shù)).【做一做】化簡________.解析 原式=|x3|(x3),x3時,原式=6;當x<3時,原式=-2x.答案 6或-2x【設計意圖】通過化簡該式,使學生掌握根式的性質(zhì),培養(yǎng)邏輯推理與數(shù)學運算的核心素養(yǎng)。  (四)典例透析1.利用根式的性質(zhì)化簡或求值【例1 化簡:(1) ;(2);(3)()2.解 (1)=-7.(2)4|4π.(3)由題意知a10,即a1.原式=a1|1a|1aa1a11aa1.【類題通法】 n為奇數(shù)時,()na,a為任意實數(shù)均可;n為偶數(shù)時,a0,()n才有意義,且()na;而a為任意實數(shù)均有意義,且|a|.鞏固練習1求下列各式的值:(1);(2)(a1);(3).解 (1)=-4.(2)|3a3|3|a1|33a.(3)a|1a| 2.由根式的意義求范圍【例1 若a1,求實數(shù)a的取值范圍.解 |a1|a1,a10,a1,實數(shù)a的取值范圍是.變式探究(變條件)若將本例中的“a1”改為“”呢?,a10,a1,實數(shù)a的取值范圍是.【類題通法】對于,當n為偶數(shù)時,要注意兩點:(1)只有a0才有意義;(2)只要有意義,必不為負.鞏固練習2(a3)0有意義,則實數(shù)a的取值范圍是(  )Aa2  Ba2a3Ca2  Da3解析B. 由題意可知,a20a40,所以a的取值范圍是a2a4. 3.有限制條件的根式的化簡【例3 設-3<x<1,化簡.解 原式=|x1||x3|,當-3<x<1時,原式=-(x1)(x3)=-2x2.變式探究(變條件)若將本例中3<x<1變?yōu)?/span>x3,則結(jié)果又是什么?解 原式=|x1||x3|.x3,x1<0,x30,原式=-(x1)(x3)4.【類題通法】n為偶數(shù)時,先化為|a|,再根據(jù)a的正負去絕對值符號.鞏固訓練3 已知x[1,2],化簡4________.解析 x[1,2],x10,x20,()4x1|x2|x1(x2)1.答案 1(五)操作演練  素養(yǎng)提升1.已知x55,則x等于(  )A.         B.       C.         D.2.運算的結(jié)果是(  )A.2            B.2          C.±2            D.不確定3.m是實數(shù),則下列式子中可能沒有意義的是(  )A.          B.        C.            D.4.的值是________.5.的值是________.答案?。?/span>1B  2A?。?/span>3C  42 502(ab)【設計意圖】通過課堂達標練習,鞏固本節(jié)學習的內(nèi)容。  (六)課堂小結(jié),反思感悟 1.知識總結(jié):2.學生反思:(1)通過這節(jié)課,你學到了什么知識? (2)在解決問題時,用到了哪些數(shù)學思想? 【設計意圖】通過課堂小結(jié),有利于學生對本節(jié)內(nèi)容形成知識網(wǎng)絡,納入自己的知識體系。   四、作業(yè)布置完成教材:第109頁  習題4.1  第1題 五、課堂記錄     六、教學反思       
  

相關教案

高中數(shù)學人教A版 (2019)必修 第一冊4.1 指數(shù)教學設計:

這是一份高中數(shù)學人教A版 (2019)必修 第一冊4.1 指數(shù)教學設計,共5頁。教案主要包含了教學目標,教學重難點,教學過程等內(nèi)容,歡迎下載使用。

數(shù)學必修 第一冊4.1 指數(shù)獲獎教案:

這是一份數(shù)學必修 第一冊4.1 指數(shù)獲獎教案,共8頁。

高中數(shù)學人教A版 (2019)必修 第一冊4.1 指數(shù)表格教學設計:

這是一份高中數(shù)學人教A版 (2019)必修 第一冊4.1 指數(shù)表格教學設計,共5頁。教案主要包含了復習,新課,例題,小結(jié)等內(nèi)容,歡迎下載使用。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
  • 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
  • 3.資料下載成功后可在60天以內(nèi)免費重復下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高中數(shù)學人教A版 (2019)必修 第一冊電子課本

4.1 指數(shù)

版本: 人教A版 (2019)

年級: 必修 第一冊

切換課文
  • 同課精品
  • 所屬專輯49份
  • 課件
  • 教案
  • 試卷
  • 學案
  • 更多
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對1服務

  • 官方微信

    官方
    微信

    關注“教習網(wǎng)”公眾號

    打開微信就能找資料

  • 免費福利

    免費福利

返回
頂部