?2017-2018學年北京師大附中七年級(上)期中數(shù)學試卷
 
一、選擇題(本大題共10道小題,每小題3分,共30分)
1.﹣的相反數(shù)是( ?。?br /> A.﹣8 B. C.0.8 D.8
2.神州十一號飛船成功飛向浩瀚宇宙,并在距地面約390000米的軌道上與天宮二號交會對接.將390000用科學記數(shù)法表示應為( ?。?br /> A.3.9×104 B.3.9×105 C.39×104 D.0.39×106
3.下列各對數(shù)中,相等的一對數(shù)是(  )
A.(﹣2)3與﹣23 B.﹣22與(﹣2)2 C.﹣(﹣3)與﹣|﹣3| D.與()2
4.下列說法中正確的是( ?。?br /> A. 是單項式 B.﹣πx 的系數(shù)為﹣1
C.﹣5不是單項式 D.﹣5a2b 的次數(shù)是3
5.下列計算正確的是( ?。?br /> A.x2y﹣2xy2=﹣x2y B.2a+3b=5ab
C.a(chǎn)3+a2=a5 D.﹣3ab﹣3ab=﹣6ab
6.已知﹣2m6n與5m2xny是的和是單項式,則( ?。?br /> A.x=2,y=1 B.x=3,y=1 C.x=,y=1 D.x=1,y=3
7.關于多項式0.3x2y﹣2x3y2﹣7xy3+1,下列說法錯誤的是( ?。?br /> A.這個多項式是五次四項式
B.四次項的系數(shù)是7
C.常數(shù)項是1
D.按y降冪排列為﹣7xy3﹣2x3y2+0.3x2y+1
8.下列方程中,是一元一次方程的是( ?。?br /> A. =3 B.x2+1=5 C.x=0 D.x+2y=3
9.已知ax=ay,下列等式變形不一定成立的是( ?。?br /> A.b+ax=b+ay B.x=y
C.x﹣ax=x﹣ay D. =
10.如圖,M,N,P,R分別是數(shù)軸上四個整數(shù)所對應的點,其中有一點是原點,并且MN=NP=PR=1.數(shù)a對應的點在M與N之間,數(shù)b對應的點在P與R之間,若|a|+|b|=3,則原點是( ?。?br />
A.M或R B.N或P C.M或N D.P或R
 
二、填空題(本大題共10道小題,每小題2分,共20分)
11.比較大?。骸 。?br /> 12.1.9583≈ ?。ň_到百分位).
13.若(a﹣1)2+|b+2|=0,則a﹣b﹣1=  .
14.設甲數(shù)為x,乙數(shù)比甲數(shù)的3倍少6,則乙數(shù)表示為 ?。?br /> 15.若a,b互為倒數(shù),c,d互為相反數(shù),則﹣c﹣d= ?。?br /> 16.數(shù)軸上表示點A的數(shù)是最大的負整數(shù),則與點A相距3個單位長度的點表示的數(shù)是 ?。?br /> 17.閱覽室某一書架上原有圖書20本,規(guī)定每天歸還圖書為正,借出圖書為負,經(jīng)過兩天借閱情況如下:(﹣3,+1),(﹣1,+2),則該書架上現(xiàn)有圖書  本.
18.如果方程ax|a+1|+3=0是關于x的一元一次方程,則a的值為 ?。?br /> 19.若方程2x+1=﹣1的解也是關于x的方程1﹣2(x﹣a)=2的解,則a的值為 ?。?br /> 20.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是 ?。?br />
 
三.計算題(本大題共4道小題,每小題20分,共20分)
21.計算題
(1)﹣2﹣1+(﹣16)﹣(﹣13);
(2)25÷5×(﹣)÷(﹣);
(3)(﹣+)×(﹣18);
(4)﹣42+1÷|﹣|×(﹣2)2.
 
四.化簡求值題(本大題共2道小題,每小題4分,共8分)
25.化簡:﹣2x2﹣5x+3﹣3x2+6x﹣1.
26.先化簡,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.
 
五.解方程(本大題共2道小題,每小題10分,共10分)
27.解方程
(1)4(2x﹣1)﹣3(5x+1)=14;
(2)﹣=2.
 
六.解答題(本大題共3道小題,每小題4分,共12分)
29.有理數(shù)a,b在數(shù)軸上的對應點位置如圖所示,且|a|=|c|.

(1)用“<”連接這四個數(shù):0,a,b,c;
(2)化簡:|a+b|﹣2|a|﹣|b+c|.
30.已知:2x﹣y=5,求﹣2(y﹣2x)2+3y﹣6x的值.
31.將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1與S2的差總保持不變,求a,b滿足的關系式.
(1)為解決上述問題,如圖3,小明設EF=x,則可以表示出S1=  ,S2= ??;
(2)求a,b滿足的關系式,寫出推導過程.

 
七.附加題(本大題共20分,第32,33小題各6分,第34小題8分)
32.填空題:(請將結果直接寫在橫線上)
定義新運算“⊕”,對于任意有理數(shù)a,b有a⊕b=,
(1)4(2⊕5)= ?。?br /> (2)方程4⊕x=5的解是 ?。?br /> (3)若A=x2+2xy+y2,B=x2﹣2xy+y2,則(A⊕B)+(B⊕A)= ?。?br /> 33.探究題:
定義:對于實數(shù)a,符號[a]表示不大于a的最大整數(shù).
例如:[5.7]=5,[﹣π]=﹣4.
(1)如果[a]=﹣2,那么a可以是  
A.﹣15 B.﹣2.5 C.﹣3.5 D.﹣4.5
(2)如果[]=3,則整數(shù)x= ?。?br /> (3)如果[﹣1.6﹣ []]=﹣3,滿足這個方程的整數(shù)x共有  個.
34.閱讀理解題:
對于任意由0,1組成的一列數(shù).將原有的每個1變成01,并將每個原有的0變成10稱為一次變換.如101經(jīng)過一次變換成為011001.請你經(jīng)過思考、操作回答下列問題:
(1)將11變換兩次后得到  ;
(2)若100101101001是由某數(shù)列兩次變換后得到.則這個數(shù)列是 ??;
(3)一個10項的數(shù)列經(jīng)過兩次變換后至少有多少對兩個連續(xù)相等的數(shù)對(即1100)?請證明你的結論;
(4)01經(jīng)過10次操作后連續(xù)兩項都是0的數(shù)對個數(shù)有  個.
 

2017-2018學年北京師大附中七年級(上)期中數(shù)學試卷
參考答案與試題解析
 
一、選擇題(本大題共10道小題,每小題3分,共30分)
1.﹣的相反數(shù)是(  )
A.﹣8 B. C.0.8 D.8
【考點】14:相反數(shù).
【分析】根據(jù)只有符號不同的兩數(shù)叫做互為相反數(shù)解答.
【解答】解:﹣的相反數(shù)是.
故選B.
 
2.神州十一號飛船成功飛向浩瀚宇宙,并在距地面約390000米的軌道上與天宮二號交會對接.將390000用科學記數(shù)法表示應為( ?。?br /> A.3.9×104 B.3.9×105 C.39×104 D.0.39×106
【考點】1I:科學記數(shù)法—表示較大的數(shù).
【分析】數(shù)據(jù)絕對值大于10或小于1時科學記數(shù)法的表示形式為a×10n的形式.其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).
【解答】解:390 000=3.9×105,
故選:B.
 
3.下列各對數(shù)中,相等的一對數(shù)是( ?。?br /> A.(﹣2)3與﹣23 B.﹣22與(﹣2)2 C.﹣(﹣3)與﹣|﹣3| D.與()2
【考點】1E:有理數(shù)的乘方;14:相反數(shù);15:絕對值.
【分析】根據(jù)有理數(shù)的乘方的運算方法,相反數(shù)的含義和求法,以及絕對值的含義和求法,逐項判斷即可.
【解答】解:∵(﹣2)3=﹣8,﹣23=﹣8,
∴(﹣2)3=﹣23,
∴選項A正確.

∵﹣22=﹣4,(﹣2)2=4,
∴﹣22≠(﹣2)2,
∴選項B不正確.

∵﹣(﹣3)=3,﹣|﹣3|=﹣3,
∴﹣(﹣3)≠﹣|﹣3|,
∴選項C不正確.

∵=,()2=,
∴≠()2,
∴選項D不正確.
故選:A.
 
4.下列說法中正確的是( ?。?br /> A. 是單項式 B.﹣πx 的系數(shù)為﹣1
C.﹣5不是單項式 D.﹣5a2b 的次數(shù)是3
【考點】42:單項式.
【分析】根據(jù)單項式與多項式的概念即可判斷.
【解答】解:(A)時多項式,故A錯誤;
(B)﹣πx 的系數(shù)為﹣π,故B錯誤;
(C)﹣5是單項式,故C錯誤;
故選(D)
 
5.下列計算正確的是( ?。?br /> A.x2y﹣2xy2=﹣x2y B.2a+3b=5ab
C.a(chǎn)3+a2=a5 D.﹣3ab﹣3ab=﹣6ab
【考點】35:合并同類項.
【分析】先判斷是否是同類項,再按合并同類項的法則合并即可.
【解答】解:A、x2y和﹣2xy2不是同類項,不能合并,故本選項錯誤;
B、2a和3b不是同類項,不能合并,故本選項錯誤;
C、a3和a2不是同類項,不能合并,而a3?a2=a5,故本選項錯誤;
D、﹣3ab﹣3ab=﹣6ab,故本選項正確;
故選D.
 
6.已知﹣2m6n與5m2xny是的和是單項式,則( ?。?br /> A.x=2,y=1 B.x=3,y=1 C.x=,y=1 D.x=1,y=3
【考點】35:合并同類項.
【分析】根據(jù)合并同類項的法則把系數(shù)相加即可.
【解答】解:由題意,得
2x=6,y=1,
解得x=3,y=1,
故選:B.
 
7.關于多項式0.3x2y﹣2x3y2﹣7xy3+1,下列說法錯誤的是( ?。?br /> A.這個多項式是五次四項式
B.四次項的系數(shù)是7
C.常數(shù)項是1
D.按y降冪排列為﹣7xy3﹣2x3y2+0.3x2y+1
【考點】43:多項式.
【分析】根據(jù)多項式的概念即可求出答案.
【解答】解:該多項式四次項是﹣7xy3,其系數(shù)為﹣7,
故選(B)
 
8.下列方程中,是一元一次方程的是( ?。?br /> A. =3 B.x2+1=5 C.x=0 D.x+2y=3
【考點】84:一元一次方程的定義.
【分析】根據(jù)只含有一個未知數(shù)(元),且未知數(shù)的次數(shù)是1,這樣的方程叫一元一次方程進行分析即可.
【解答】解:A、不是一元一次方程,故此選項錯誤;
B、不是一元一次方程,故此選項錯誤;
C、是一元一次方程,故此選項正確;
D、不是一元一次方程,故此選項錯誤;
故選:C.
 
9.已知ax=ay,下列等式變形不一定成立的是(  )
A.b+ax=b+ay B.x=y
C.x﹣ax=x﹣ay D. =
【考點】83:等式的性質(zhì).
【分析】根據(jù)等式的性質(zhì),可得答案.
【解答】解:A、兩邊都加b,結果不變,故A不符合題意;
B、a=0時兩邊都除以a,無意義,故B符合題意;
C、兩邊都乘以﹣1,都加x,結果不變,故C不符合題意;
D、兩邊都除以同一個不為零的整式結果不變,故D不符合題意;
故選:B.
 
10.如圖,M,N,P,R分別是數(shù)軸上四個整數(shù)所對應的點,其中有一點是原點,并且MN=NP=PR=1.數(shù)a對應的點在M與N之間,數(shù)b對應的點在P與R之間,若|a|+|b|=3,則原點是(  )

A.M或R B.N或P C.M或N D.P或R
【考點】15:絕對值;13:數(shù)軸.
【分析】先利用數(shù)軸特點確定a,b的關系從而求出a,b的值,確定原點.
【解答】解:∵MN=NP=PR=1,
∴|MN|=|NP|=|PR|=1,
∴|MR|=3;
①當原點在N或P點時,|a|+|b|<3,又因為|a|+|b|=3,所以,原點不可能在N或P點;
②當原點在M、R時且|Ma|=|bR|時,|a|+|b|=3;
綜上所述,此原點應是在M或R點.
故選A.

 
二、填空題(本大題共10道小題,每小題2分,共20分)
11.比較大?。骸。尽。?br /> 【考點】18:有理數(shù)大小比較.
【分析】先計算|﹣|==,|﹣|==,然后根據(jù)負數(shù)的絕對值越大,這個數(shù)反而越小即可得到它們的關系關系.
【解答】解:∵|﹣|==,|﹣|==,
而<,
∴﹣>﹣.
故答案為:>.
 
12.1.9583≈ 1.96 (精確到百分位).
【考點】1H:近似數(shù)和有效數(shù)字.
【分析】根據(jù)近似數(shù)的精確度求解.
【解答】解:1.9583≈1.96(精確到百分位)
故答案為1.96.
 
13.若(a﹣1)2+|b+2|=0,則a﹣b﹣1= 2 .
【考點】1F:非負數(shù)的性質(zhì):偶次方;16:非負數(shù)的性質(zhì):絕對值.
【分析】根據(jù)非負數(shù)的性質(zhì)列出算式,求出a、b的值,計算即可.
【解答】解:由題意得,a﹣1=0,b=2=0,
解得,a=1,b=﹣2,
則a﹣b﹣1=1+2﹣1=2,
故答案為:2.
 
14.設甲數(shù)為x,乙數(shù)比甲數(shù)的3倍少6,則乙數(shù)表示為 3x﹣6?。?br /> 【考點】32:列代數(shù)式.
【分析】根據(jù)題意列出代數(shù)式解答即可.
【解答】解:乙數(shù)表示為3x﹣6;
故答案為:3x﹣6
 
15.若a,b互為倒數(shù),c,d互為相反數(shù),則﹣c﹣d= ?。?br /> 【考點】33:代數(shù)式求值.
【分析】依據(jù)倒數(shù)的定義得到ab=1,依據(jù)相反數(shù)的性質(zhì)得到c+d=0,然后代入求解即可.
【解答】解:∵a,b互為倒數(shù),c,d互為相反數(shù),
∴ab=1,c+d=0.
∴原式=﹣0=.
故答案為:.
 
16.數(shù)軸上表示點A的數(shù)是最大的負整數(shù),則與點A相距3個單位長度的點表示的數(shù)是 2或﹣4 .
【考點】13:數(shù)軸.
【分析】由點A的數(shù)是最大的負整數(shù)知點A表示數(shù)﹣1,再分點A左側和點A右側兩種情況可得與點A相距3個單位長度的點表示的數(shù).
【解答】解:∵點A的數(shù)是最大的負整數(shù),
∴點A表示數(shù)﹣1,
∴在點A左側,與點A相距3個單位長度的點表示的數(shù)是﹣1﹣3=﹣4,
在點A右側,與點A相距3個單位長度的點表示的數(shù)是﹣1+3=2,
故答案為:2或﹣4.
 
17.閱覽室某一書架上原有圖書20本,規(guī)定每天歸還圖書為正,借出圖書為負,經(jīng)過兩天借閱情況如下:(﹣3,+1),(﹣1,+2),則該書架上現(xiàn)有圖書 19 本.
【考點】11:正數(shù)和負數(shù).
【分析】(﹣3,+1)表示借出3本歸還1本,求出20與借出歸還的和就是該書架上現(xiàn)有圖書的本數(shù),
【解答】解:20﹣3+1﹣1+2
=19(本)
故答案為:19
 
18.如果方程ax|a+1|+3=0是關于x的一元一次方程,則a的值為 ﹣2 .
【考點】84:一元一次方程的定義.
【分析】根據(jù)一元一次方程的定義得到|a+1|=1且a≠0,據(jù)此求得a的值.
【解答】解:∵方程ax|a+1|+3=0是關于x的一元一次方程,
∴|a+1|=1且a≠0,
解得a=﹣2.
故答案是:﹣2.
 
19.若方程2x+1=﹣1的解也是關于x的方程1﹣2(x﹣a)=2的解,則a的值為 ﹣ .
【考點】85:一元一次方程的解.
【分析】求出第一個方程的解得到x的值,代入第二個方程計算即可求出a的值.
【解答】解:方程2x+1=﹣1,
解得:x=﹣1,
代入方程得:1+2+2a=2,
解得:a=﹣,
故答案為:﹣
 
20.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是 n2+2n?。?br />
【考點】L1:多邊形.
【分析】第1個圖形是2×3﹣3,第2個圖形是3×4﹣4,第3個圖形是4×5﹣5,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是(n+1)(n+2)﹣(n+2)=n2+2n.
【解答】解:第n個圖形需要黑色棋子的個數(shù)是n2+2n.
故答案為:n2+2n.
 
三.計算題(本大題共4道小題,每小題20分,共20分)
21.計算題
(1)﹣2﹣1+(﹣16)﹣(﹣13);
(2)25÷5×(﹣)÷(﹣);
(3)(﹣+)×(﹣18);
(4)﹣42+1÷|﹣|×(﹣2)2.
【考點】1G:有理數(shù)的混合運算.
【分析】(1)原式利用減法法則變形,計算即可得到結果;
(2)原式從左到右依次計算即可得到結果;
(3)原式利用乘法分配律計算即可得到結果;
(4)原式先計算乘方運算,再計算乘除運算,最后算加減運算即可得到結果.
【解答】解:(1)原式=﹣2﹣1﹣16+13=﹣6;
(2)原式=25×××=;
(3)原式=﹣14+15﹣5=﹣4;
(4)原式=﹣16+××=﹣16+=﹣14.
 
四.化簡求值題(本大題共2道小題,每小題4分,共8分)
25.化簡:﹣2x2﹣5x+3﹣3x2+6x﹣1.
【考點】35:合并同類項.
【分析】根據(jù)合并同類項的法則即可求出答案.
【解答】解:原式=(﹣2﹣3)x2+(﹣5+6)x+(3﹣1)=﹣5x2+x+2
 
26.先化簡,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.
【考點】45:整式的加減—化簡求值.
【分析】原式去括號合并得到最簡結果,把a與b的值代入計算即可求出值.
【解答】解:原式=3a2﹣3ab+21﹣6ab+2a2﹣2+3=5a2﹣9ab+22,
當a=2,b=時,原式=20﹣6+22=36.
 
五.解方程(本大題共2道小題,每小題10分,共10分)
27.解方程
(1)4(2x﹣1)﹣3(5x+1)=14;
(2)﹣=2.
【考點】86:解一元一次方程.
【分析】(1)方程去括號,移項合并,把x系數(shù)化為1,即可求出解;
(2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.
【解答】解:(1)去括號得:8x﹣4﹣15x﹣3=14,
移項合并得:﹣7x=21,
解得:x=﹣3;
(2)去分母得:3(x+2)﹣2(2x﹣3)=24,
去括號得:3x+6﹣4x+6=24,
移項合并得:﹣x=12,
解得:x=﹣12.
 
六.解答題(本大題共3道小題,每小題4分,共12分)
29.有理數(shù)a,b在數(shù)軸上的對應點位置如圖所示,且|a|=|c|.

(1)用“<”連接這四個數(shù):0,a,b,c;
(2)化簡:|a+b|﹣2|a|﹣|b+c|.
【考點】44:整式的加減;13:數(shù)軸;15:絕對值.
【分析】(1)根據(jù)數(shù)軸上點的位置判斷即可;
(2)判斷出絕對值里邊式子的正負,利用絕對值的代數(shù)意義化簡,去括號合并即可得到結果.
【解答】解:(1)根據(jù)數(shù)軸得:b<a<0<c;
(2)由圖可知:a<0,a+b<0,b+c<0,a與c互為相反數(shù),即a+c=0,
∴原式=﹣a﹣b+2a+b+c=a+c=0.
 
30.已知:2x﹣y=5,求﹣2(y﹣2x)2+3y﹣6x的值.
【考點】33:代數(shù)式求值.
【分析】把2x﹣y=5整體代入代數(shù)式求得答案即可.
【解答】解:原式=﹣2(y﹣2x)2﹣3(2x﹣y)
∵2x﹣y=5,
∴原式=﹣2×52﹣3×5
=﹣65.
 
31.將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1與S2的差總保持不變,求a,b滿足的關系式.
(1)為解決上述問題,如圖3,小明設EF=x,則可以表示出S1= a(x+a) ,S2= 4b(x+2b)??;
(2)求a,b滿足的關系式,寫出推導過程.

【考點】32:列代數(shù)式.
【分析】(1)根據(jù)題意得出面積即可;
(2)表示出左上角與右下角部分的面積,求出它們的差,根據(jù)它們的差與BC無關即可求出a與b的關系式.
【解答】解:(1)S1=a(x+a),S2=4b(x+2b),故答案為:a(x+a),4b(x+2b),
(2)由(1)知:
S1=a(x+a),S2=4b(x+2b),
∴S1﹣S2
=a(x+a)﹣4b(x+2b)
=ax+a2﹣4bx﹣8b2
=(a﹣4b)x+a2﹣8b2,
∵S1與S2的差總保持不變,
∴a﹣4b=0.
∴a=4b.
 
七.附加題(本大題共20分,第32,33小題各6分,第34小題8分)
32.填空題:(請將結果直接寫在橫線上)
定義新運算“⊕”,對于任意有理數(shù)a,b有a⊕b=,
(1)4(2⊕5)= 34 .
(2)方程4⊕x=5的解是 x=2?。?br /> (3)若A=x2+2xy+y2,B=x2﹣2xy+y2,則(A⊕B)+(B⊕A)= 4x2+4y2 .
【考點】1G:有理數(shù)的混合運算.
【分析】(1)由題目中給出的運算方法,先算2⊕5,再算4(2⊕5)即可;
(2)由題目中給出的運算方法,得出4⊕x=,解方程=5即可;
(3)由題目中給出的運算方法,先求出(A⊕B)與(B⊕A),再相加即可.
【解答】解:(1)∵2⊕5==,
∴4(2⊕5)=4×=34.
故答案為34;

(2)4⊕x=,
解方程=5,得x=2,
故答案為x=2;

(3)∵A=x2+2xy+y2,B=x2﹣2xy+y2,
∴(A⊕B)==2x2﹣2xy+2y2,

(B⊕A)==2x2+2xy+2y2,
∴(A⊕B)+(B⊕A)=4x2+4y2.
故答案為4x2+4y2.
 
33.探究題:
定義:對于實數(shù)a,符號[a]表示不大于a的最大整數(shù).
例如:[5.7]=5,[﹣π]=﹣4.
(1)如果[a]=﹣2,那么a可以是 A 
A.﹣15 B.﹣2.5 C.﹣3.5 D.﹣4.5
(2)如果[]=3,則整數(shù)x= 5或6?。?br /> (3)如果[﹣1.6﹣ []]=﹣3,滿足這個方程的整數(shù)x共有 12 個.
【考點】CB:解一元一次不等式組;2A:實數(shù)大小比較.
【分析】(1)根據(jù)新定義解答即可得;
(2)由新定義得出3≤<4,解之可得答案;
(3)令[]=y,得[﹣1.6﹣y]=﹣3,即﹣3≤﹣1.6﹣y<﹣2,解之得出整數(shù)y的值,從而有[]=3、4、5、6、7、8,再進一步求解可得.
【解答】解:(1)根據(jù)題意知,[a]=﹣2表示不超過a的最大整數(shù),
∴a可以是﹣15,
故選:A;

(2)根據(jù)題意得3≤<4,
解得:5≤x<7,
則整數(shù)x=5或6,
故答案為:5或6;

(3)令[]=y,
則原方程可變形為[﹣1.6﹣y]=﹣3,
∴﹣3≤﹣1.6﹣y<﹣2,
解得:2.4<y≤8.4,
則y可取的整數(shù)有3、4、5、6、7、8,
若y=3,則3≤<4,解得:5≤x<7,其整數(shù)解有5、6;
若y=4,則4≤<5,解得:7≤x<9,其整數(shù)解有7、8;
若y=5,則5≤<6,解得:9≤x<11,其整數(shù)解有9、10;
若y=6,則6≤<7,解得:11≤x<13,其整數(shù)解有11、12;
若y=7,則7≤<8,解得:13≤x<15,其整數(shù)解有13、14;
若y=8,則8≤<9,解得:15≤x<17,其整數(shù)解有15、16;
∴滿足這個方程的整數(shù)x共有12個,
故答案為:12.
 
34.閱讀理解題:
對于任意由0,1組成的一列數(shù).將原有的每個1變成01,并將每個原有的0變成10稱為一次變換.如101經(jīng)過一次變換成為011001.請你經(jīng)過思考、操作回答下列問題:
(1)將11變換兩次后得到 10011001 ;
(2)若100101101001是由某數(shù)列兩次變換后得到.則這個數(shù)列是 101 ;
(3)一個10項的數(shù)列經(jīng)過兩次變換后至少有多少對兩個連續(xù)相等的數(shù)對(即1100)?請證明你的結論;
(4)01經(jīng)過10次操作后連續(xù)兩項都是0的數(shù)對個數(shù)有 341 個.
【考點】1G:有理數(shù)的混合運算.
【分析】(1)根據(jù)變換規(guī)則解答即可得;
(2)逆用變換規(guī)則,反向推理可得答案;
(3)由0經(jīng)過兩次變換后得到0110、1經(jīng)過兩次變換后得到1001知10項的數(shù)列至少有10對連續(xù)相等的數(shù)對,根據(jù)0101010101經(jīng)過兩次變換后得到0110100101101001…恰有10對連續(xù)相等的數(shù)對,得出答案;
(4)記數(shù)列01為A0,k次變換后數(shù)列為Ak,連續(xù)兩項都是0的數(shù)對個數(shù)為lk,設Ak中有bk個01數(shù)對,Ak+1中的00數(shù)對只能由Ak中的01數(shù)對得到,可得lk+1=bk,Ak+1中的01數(shù)對有2種產(chǎn)生途徑:①由Ak中的1得到;②由Ak中的00得,由此得出k為偶數(shù)時,lk關于k的函數(shù)表達式,將k=10代入即可得.
【解答】解:(1)將11一次変換得0101,再次變換得10011001,
故答案為:10011001;

(2)100101101001一次変換的原數(shù)是011001,再次變換的原數(shù)是101,
故答案為:101;

(3)經(jīng)過兩次變換后至少有10對兩個連續(xù)相等的數(shù)對,
∵0經(jīng)過兩次變換后得到0110,1經(jīng)過兩次變換后得到1001,
∴10項的數(shù)列至少有10對連續(xù)相等的數(shù)對,
又∵0101010101經(jīng)過兩次變換后得到0110100101101001…恰有10對連續(xù)相等的數(shù)對,
∴一個10項的數(shù)列經(jīng)過兩次變換后至少有10對兩個連續(xù)相等的數(shù)對;

(4)記數(shù)列01為A0,k次變換后數(shù)列為Ak,連續(xù)兩項都是0的數(shù)對個數(shù)為lk,
設Ak中有bk個01數(shù)對,Ak+1中的00數(shù)對只能由Ak中的01數(shù)對得到,
∴l(xiāng)k+1=bk,Ak+1中的01數(shù)對有2種產(chǎn)生途徑:①由Ak中的1得到;②由Ak中的00得到;
根據(jù)題意知,Ak中的0和1的個數(shù)總是相等,且共有2k+1個,
∴bk+1=lk+2k,
∴l(xiāng)k+2=lk+2k,
由A0:0、1可得A1:1、0、0、1,A2:0、1、1、0、1、0、0、1,
∴l(xiāng)1=1、l2=2,
當k≥3時,
若k為偶數(shù),lk=lk﹣2+2k﹣2、lk﹣2=lk﹣4+2k﹣4、…、l4=l2+22,
上述各式相加可得lk=1+22+24+…+2k﹣2==(2k﹣1),
經(jīng)檢驗,k=2時也滿足lk=(2k﹣1),
∴當k=10時,l10==341,
故答案為:341.
 

2018年5月19日

相關試卷

2021-2022學年北京師大附中九年級(上)期中數(shù)學試卷(解析):

這是一份2021-2022學年北京師大附中九年級(上)期中數(shù)學試卷(解析),共31頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

北京三中2017-2018學年八年級(上)期中數(shù)學試卷(解析版):

這是一份北京三中2017-2018學年八年級(上)期中數(shù)學試卷(解析版),共25頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

北京四十一中2017-2018學年八年級(上)期中數(shù)學試卷(解析版):

這是一份北京四十一中2017-2018學年八年級(上)期中數(shù)學試卷(解析版),共16頁。試卷主要包含了選擇題,填空題,計算題,解答題等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關試卷 更多

北京十三中2017-2018學年八年級(上)期中數(shù)學試卷(解析版)

北京十三中2017-2018學年八年級(上)期中數(shù)學試卷(解析版)

2017-2018學年北京市人大附中八年級(上)期中數(shù)學試卷(解析版)

2017-2018學年北京市人大附中八年級(上)期中數(shù)學試卷(解析版)

北京159中2017-2018學年八年級(上)期中數(shù)學試卷(解析版)

北京159中2017-2018學年八年級(上)期中數(shù)學試卷(解析版)

2020-2021學年北京師大附中九年級(上)期中數(shù)學試卷 (原卷+解析)

2020-2021學年北京師大附中九年級(上)期中數(shù)學試卷 (原卷+解析)

資料下載及使用幫助
版權申訴
版權申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權,請掃碼添加我們的相關工作人員,我們盡可能的保護您的合法權益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權申訴二維碼
期中專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部