
1.(2020·新課標(biāo)Ⅰ)已知A、B分別為橢圓E:(a>1)的左、右頂點(diǎn),G為E的上頂點(diǎn),,P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交點(diǎn)為D.
(1)求E的方程;
(2)證明:直線CD過(guò)定點(diǎn).
2.(2020·新課標(biāo)Ⅱ)已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過(guò)F且與x軸垂直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)設(shè)M是C1與C2的公共點(diǎn),若|MF|=5,求C1與C2的標(biāo)準(zhǔn)方程.
3.(2020·新課標(biāo)Ⅲ)已知橢圓的離心率為,,分別為的左、右頂點(diǎn).
(1)求C的方程;
(2)若點(diǎn)P在C上,點(diǎn)Q在直線上,且,,求的面積.
4.(2020·北京卷)已知橢圓過(guò)點(diǎn),且.
(Ⅰ)求橢圓C的方程:
(Ⅱ)過(guò)點(diǎn)的直線l交橢圓C于點(diǎn),直線分別交直線于點(diǎn).求的值.
5.(2020·江蘇卷)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知.
(1)求的值;
(2)在邊BC上取一點(diǎn)D,使得,求的值.
6.(2020·江蘇卷)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓E上且在第一象限內(nèi),AF2⊥F1F2,直線AF1與橢圓E相交于另一點(diǎn)B.
(1)求△AF1F2的周長(zhǎng);
(2)在x軸上任取一點(diǎn)P,直線AP與橢圓E的右準(zhǔn)線相交于點(diǎn)Q,求的最小值;
(3)設(shè)點(diǎn)M在橢圓E上,記△OAB與△MAB的面積分別為S1,S2,若S2=3S1,求點(diǎn)M的坐標(biāo).
7.(2020·山東卷)已知橢圓C:過(guò)點(diǎn)M(2,3),點(diǎn)A為其左頂點(diǎn),且AM的斜率為 ,
(1)求C的方程;
(2)點(diǎn)N為橢圓上任意一點(diǎn),求△AMN的面積的最大值.
8.(2020·天津卷)已知橢圓的一個(gè)頂點(diǎn)為,右焦點(diǎn)為,且,其中為原點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)已知點(diǎn)滿足,點(diǎn)在橢圓上(異于橢圓的頂點(diǎn)),直線與以為圓心的圓相切于點(diǎn),且為線段的中點(diǎn).求直線的方程.
9.(2020·浙江卷)如圖,已知橢圓,拋物線,點(diǎn)A是橢圓與拋物線的交點(diǎn),過(guò)點(diǎn)A的直線l交橢圓于點(diǎn)B,交拋物線于M(B,M不同于A).
(Ⅰ)若,求拋物線的焦點(diǎn)坐標(biāo);
(Ⅱ)若存在不過(guò)原點(diǎn)的直線l使M為線段AB的中點(diǎn),求p的最大值.
【2019年】
12.【2019年高考全國(guó)Ⅱ卷】如圖,長(zhǎng)方體ABCD–A1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
13.【2019年高考全國(guó)Ⅲ卷】圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.
(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;
(2)求圖2中的二面角B?CG?A的大小.
14.【2019年高考北京卷】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點(diǎn),點(diǎn)F在PC上,且.
(1)求證:CD⊥平面PAD;
(2)求二面角F–AE–P的余弦值;
(3)設(shè)點(diǎn)G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說(shuō)明理由.
15.【2019年高考天津卷】如圖,平面,,.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)若二面角的余弦值為,求線段的長(zhǎng).
16.【2019年高考江蘇卷】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
17.【2019年高考浙江卷】(本小題滿分15分)如圖,已知三棱柱,平面平面,,分別是AC,A1B1的中點(diǎn).
(1)證明:;
(2)求直線EF與平面A1BC所成角的余弦值.
【2018年】
4. (2018年天津卷)設(shè)橢圓(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為,點(diǎn)A的坐標(biāo)為,且.
(I)求橢圓的方程;
(II)設(shè)直線l:與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若(O為原點(diǎn)) ,求k的值.5. (2018年江蘇卷)如圖,在平面直角坐標(biāo)系中,橢圓C過(guò)點(diǎn),焦點(diǎn),圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P.
①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);
②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.6. (2018年全國(guó)I卷理數(shù))設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),證明:.7. (2018年全國(guó)Ⅲ卷理數(shù))已知斜率為的直線與橢圓交于,兩點(diǎn),線段的中點(diǎn)為.
(1)證明:;
(2)設(shè)為的右焦點(diǎn),為上一點(diǎn),且.證明:,,成等差數(shù)列,并求該數(shù)列的公差.
拋物線
1. (2018年全國(guó)I卷理數(shù))設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)(–2,0)且斜率為的直線與C交于M,N兩點(diǎn),則=
A. 5 B. 6 C. 7 D. 8
2. (2018年全國(guó)Ⅲ卷理數(shù))已知點(diǎn)和拋物線,過(guò)的焦點(diǎn)且斜率為的直線與交于,兩點(diǎn).若,則________.
3. (2018年浙江卷)如圖,已知點(diǎn)P是y軸左側(cè)(不含y軸)一點(diǎn),拋物線C:y2=4x上存在不同的兩點(diǎn)A,B滿足PA,PB的中點(diǎn)均在C上.
(Ⅰ)設(shè)AB中點(diǎn)為M,證明:PM垂直于y軸;
(Ⅱ)若P是半橢圓x2+=1(xb>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).
13.【2017課標(biāo)II,理】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:上,過(guò)M作x軸的垂線,垂足為N,點(diǎn)P滿足。
求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)Q在直線上,且。證明:過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F。
14.【2017山東,理21】在平面直角坐標(biāo)系中,橢圓:的離心率為,焦距為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動(dòng)直線:交橢圓于兩點(diǎn),是橢圓上一點(diǎn),直線的斜率為,且,是線段延長(zhǎng)線上一點(diǎn),且,的半徑為,是的兩條切線,切點(diǎn)分別為.求的最大值,并求取得最大值時(shí)直線的斜率.
15.【2017北京,理18】已知拋物線C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0,)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
16.【2017天津,理19】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn),到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點(diǎn),關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
20.【2017江蘇,17】 如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, ,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)在橢圓上,且位于第一象限,過(guò)點(diǎn)作 直線的垂線,過(guò)點(diǎn)作直線的垂線.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的交點(diǎn)在橢圓上,求點(diǎn)的坐標(biāo).
【2016年】
14.【2016高考山東理數(shù)】(本小題滿分14分)
平面直角坐標(biāo)系中,橢圓C: 的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
( = 1 \* ROMAN I)求橢圓C的方程;
( = 2 \* ROMAN II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.
( = 1 \* rman i)求證:點(diǎn)M在定直線上;
( = 2 \* rman ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求 的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
15.【2016高考江蘇卷】(本小題滿分10分)
如圖,在平面直角坐標(biāo)系xOy中,已知直線,拋物線
(1)若直線l過(guò)拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求p的取值范圍.
16.【2016高考天津理數(shù)】(本小題滿分14分)
設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中 為原點(diǎn),為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.
17.【2016高考新課標(biāo)3理數(shù)】已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).
(I)若在線段上,是的中點(diǎn),證明;
(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
[來(lái)源:Z#xx#k.Cm]18.【2016高考浙江理數(shù)】(本題滿分15分)如圖,設(shè)橢圓(a>1).
(I)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a、k表示);
(II)若任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值
范圍.
19.【2016高考新課標(biāo)2理數(shù)】已知橢圓的焦點(diǎn)在軸上,是的左頂點(diǎn),斜率為的直線交于兩點(diǎn),點(diǎn)在上,.
(Ⅰ)當(dāng)時(shí),求的面積;
(Ⅱ)當(dāng)時(shí),求的取值范圍.
20.【2016年高考北京理數(shù)】(本小題14分)
已知橢圓C: ()的離心率為 ,,,,的面積為1.
(1)求橢圓C的方程;
(2)設(shè)的橢圓上一點(diǎn),直線與軸交于點(diǎn)M,直線PB與軸交于點(diǎn)N.
求證:為定值.
21.【2016年高考四川理數(shù)】(本小題滿分13分)
已知橢圓E:的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線與橢圓E有且只有一個(gè)公共點(diǎn)T.
(Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo);
(Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線l’平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù),使得,并求的值.
22. 【2016高考上海理數(shù)】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
雙曲線的左、右焦點(diǎn)分別為,直線過(guò)且與雙曲線交于兩點(diǎn)。
(1)若的傾斜角為,是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè),若的斜率存在,且,求的斜率.
這是一份五年高考(2016-2020)高考數(shù)學(xué)(理)真題分項(xiàng)詳解——專題12 復(fù)數(shù),文件包含專題原卷版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題12復(fù)數(shù)學(xué)生版doc、專題解析版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題12復(fù)數(shù)教師版doc等2份試卷配套教學(xué)資源,其中試卷共14頁(yè), 歡迎下載使用。
這是一份五年高考(2016-2020)高考數(shù)學(xué)(理)真題分項(xiàng)詳解——專題19 函數(shù)與導(dǎo)數(shù)綜合,文件包含專題原卷版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題19函數(shù)與導(dǎo)數(shù)綜合學(xué)生版doc、專題解析版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題19函數(shù)與導(dǎo)數(shù)綜合教師版doc等2份試卷配套教學(xué)資源,其中試卷共75頁(yè), 歡迎下載使用。
這是一份五年高考(2016-2020)高考數(shù)學(xué)(理)真題分項(xiàng)詳解——專題05 平面解析幾何,文件包含專題原卷版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題05平面解析幾何學(xué)生版doc、專題解析版五年高考2016-2020高考數(shù)學(xué)理真題分項(xiàng)詳解專題05平面解析幾何教師版doc等2份試卷配套教學(xué)資源,其中試卷共45頁(yè), 歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功