題型一 直線與橢圓的位置關(guān)系
1.若直線y=kx+1與橢圓+=1總有公共點(diǎn),則m的取值范圍是(  )
A.m>1 B.m>0
C.02,即b>0),則c=1.因?yàn)檫^F2且垂直于x軸的直線與橢圓交于A,B兩點(diǎn),且|AB|=3,所以=,b2=a2-c2,所以a2=4,b2=a2-c2=4-1=3,橢圓的方程為+=1.
5.(2018·錦州質(zhì)檢)經(jīng)過橢圓+y2=1的一個(gè)焦點(diǎn)作傾斜角為45°的直線l,交橢圓于A,B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則·等于(  )
A.-3 B.-
C.-或-3 D.±
答案 B
解析 依題意,當(dāng)直線l經(jīng)過橢圓的右焦點(diǎn)(1,0)時(shí),其方程為y-0=tan 45°(x-1),即y=x-1.代入橢圓方程+y2=1并整理得3x2-4x=0,解得x=0或x=.所以兩個(gè)交點(diǎn)坐標(biāo)為A(0,-1),B,所以·=(0,-1)·=-.同理,直線l經(jīng)過橢圓的左焦點(diǎn)時(shí),也可得·=-.
6.設(shè)F1,F(xiàn)2分別是橢圓+y2=1的左、右焦點(diǎn),若橢圓上存在一點(diǎn)P,使(+)·=0(O為坐標(biāo)原點(diǎn)),則△F1PF2的面積是(  )
A.4 B.3 C.2 D.1
答案 D
解析 ∵(+)·=(+)·
=·=0,
∴PF1⊥PF2,∠F1PF2=90°.
設(shè)|PF1|=m,|PF2|=n,
則m+n=4,m2+n2=12,2mn=4,mn=2,
∴=mn=1.
7.直線y=kx+k+1與橢圓+=1的位置關(guān)系是________.
答案 相交
解析 由于直線y=kx+k+1=k(x+1)+1過定點(diǎn)(-1,1),而(-1,1)在橢圓內(nèi),故直線與橢圓必相交.
8.過點(diǎn)M(1,1)作斜率為-的直線與橢圓C:+=1(a>b>0)相交于A,B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率等于________.
答案 
解析 設(shè)A(x1,y1),B(x2,y2),則
兩式相減,得
+=0,
∴=-·.
∵=-,x1+x2=2,y1+y2=2,
∴-=-,
∴a2=2b2.又∵b2=a2-c2,
∴a2=2(a2-c2),∴a2=2c2,∴=.
9.已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,橢圓C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF,若|AB|=10,|AF|=6,cos∠ABF=,則橢圓C的離心率e=________.
答案 
解析 設(shè)橢圓的右焦點(diǎn)為F1,在△ABF中,由余弦定理可解得|BF|=8,所以△ABF為直角三角形,且∠AFB=90°,又因?yàn)樾边匒B的中點(diǎn)為O,所以|OF|=c=5,連接AF1,因?yàn)锳,B關(guān)于原點(diǎn)對(duì)稱,所以|BF|=|AF1|=8,所以2a=14,a=7,所以離心率e=.
10.已知直線MN過橢圓+y2=1的左焦點(diǎn)F,與橢圓交于M,N兩點(diǎn).直線PQ過原點(diǎn)O與MN平行,且PQ與橢圓交于P,Q兩點(diǎn),則=________.
答案 2
解析 不妨取直線MN⊥x軸,橢圓+y2=1的左焦點(diǎn)F(-1,0),令x=-1,得y2=,
所以y=±,所以|MN|=,此時(shí)|PQ|=2b=2,
則==2.
11.如圖,橢圓C:+=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn),上頂點(diǎn)分別為A,B,且|AB|=|BF|.

(1)求橢圓C的離心率;
(2)若斜率為2的直線l過點(diǎn)(0,2),且l交橢圓C于P,Q兩點(diǎn),OP⊥OQ,求直線l的方程及橢圓C的方程.
解 (1)由已知|AB|=|BF|,即=a,
4a2+4b2=5a2,4a2+4(a2-c2)=5a2,∴e==.
(2)由(1)知a2=4b2,∴橢圓C:+=1.
設(shè)P(x1,y1),Q(x2,y2),
直線l的方程為y-2=2(x-0),即2x-y+2=0.
由消去y,
得x2+4(2x+2)2-4b2=0,
即17x2+32x+16-4b2=0.
Δ=322+16×17(b2-4)>0,解得b>.
x1+x2=-,x1x2=.
∵OP⊥OQ,∴·=0,
即x1x2+y1y2=0,x1x2+(2x1+2)(2x2+2)=0,
5x1x2+4(x1+x2)+4=0.
從而-+4=0,
解得b=1,滿足b>.
∴橢圓C的方程為+y2=1.
12.設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn),若·+·=8,O為坐標(biāo)原點(diǎn),求△OCD的面積.
解 (1)過焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的線段長(zhǎng)為,
所以=.
因?yàn)闄E圓的離心率為,所以=,
又a2=b2+c2,可解得b=,c=1,a=.
所以橢圓的方程為+=1.
(2)由(1)可知F(-1,0),
則直線CD的方程為y=k(x+1).
聯(lián)立
消去y得(2+3k2)x2+6k2x+3k2-6=0.
設(shè)C(x1,y1),D(x2,y2),
所以x1+x2=-,x1x2=.
又A(-,0),B(,0),
所以·+·
=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)
=6-2x1x2-2y1y2
=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2
=6+=8,
解得k=±.
從而x1+x2=-=-,x1x2==0.
所以|x1-x2|=
= =,
|CD|=|x1-x2|
=×=.
而原點(diǎn)O到直線CD的距離為
d===,
所以△OCD的面積為S=|CD|×d=××=.

13.(2018·廣州模擬)已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F2,O為坐標(biāo)原點(diǎn),M為y軸上一點(diǎn),點(diǎn)A是直線MF2與橢圓C的一個(gè)交點(diǎn),且|OA|=|OF2|=2|OM|,則橢圓C的離心率為(  )
A. B. C. D.
答案 D
解析 方法一 ∵|OA|=|OF2|=2|OM|,M在橢圓C的短軸上,設(shè)橢圓C的左焦點(diǎn)為F1,連接AF1,

∵|OA|=|OF2|,∴|OA|=·|F1F2|,
∴AF1⊥AF2,
從而△AF1F2∽△OMF2,∴==,
又|AF1|2+|AF2|2=(2c)2,
∴|AF1|=c,|AF2|=c,
又∵|AF1|+|AF2|=2a,∴c=2a,即=.
故選D.
方法二 ∵|OA|=|OF2|=2|OM|,M在橢圓C的短軸上,在Rt△MOF2中,tan∠MF2O==,
設(shè)橢圓C的左焦點(diǎn)為F1,連接AF1,
∵|OA|=|OF2|,∴|OA|=|F1F2|,
∴AF1⊥AF2,∴tan∠AF2F1==,
設(shè)|AF1|=x(x>0),則|AF2|=2x,∴|F1F2|=x,
∴e====,故選D.
14.已知橢圓+=1(a>b>0)短軸的端點(diǎn)為P(0,b),Q(0,-b),長(zhǎng)軸的一個(gè)端點(diǎn)為M,AB為經(jīng)過橢圓中心且不在坐標(biāo)軸上的一條弦,若PA,PB的斜率之積等于-,則點(diǎn)P到直線QM的距離為______.
答案 b
解析 設(shè)A(x0,y0),則B點(diǎn)坐標(biāo)為(-x0,-y0),
則·=-,即=-,
由于+=1,則=-,
故-=-,則=,不妨取M(a,0),則直線QM的方程為bx-ay-ab=0,則點(diǎn)P到直線QM的距離為
d===b.

15.平行四邊形ABCD內(nèi)接于橢圓+=1,直線AB的斜率k1=2,則直線AD的斜率k2等于(  )
A. B.- C.- D.-2
答案 C
解析 設(shè)AB的中點(diǎn)為G,則由橢圓的對(duì)稱性知,O為平行四邊形ABCD的對(duì)角線的交點(diǎn),則GO∥AD.
設(shè)A(x1,y1),B(x2,y2),則有兩式相減得
=-,
整理得=-=-k1=-2,
即=-.又G,
所以kOG==-,即k2=-,故選C.
16.過橢圓+=1(a>b>0)上的動(dòng)點(diǎn)M作圓x2+y2=的兩條切線,切點(diǎn)分別為P和Q,直線PQ與x軸和y軸的交點(diǎn)分別為E和F,求△EOF面積的最小值.
解 設(shè)M(x0,y0),P(x1,y1),Q(x2,y2),
由題意知PQ斜率存在,且不為0,所以x0y0≠0,
則直線MP和MQ的方程分別為x1x+y1y=,x2x+y2y=.因?yàn)辄c(diǎn)M在MP和MQ上,所以有x1x0+y1y0=,x2x0+y2y0=,則P,Q兩點(diǎn)的坐標(biāo)滿足方程x0x+y0y=,所以直線PQ的方程為x0x+y0y=,可得E和F,
所以S△EOF=·|OE||OF|=,
因?yàn)閎2y+a2x=a2b2,b2y+a2x≥2ab|x0y0|,
所以|x0y0|≤,所以S△EOF=≥,
當(dāng)且僅當(dāng)b2y=a2x=時(shí)取“=”,
故△EOF面積的最小值為.

英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部