最新考綱
考情考向分析
1.了解橢圓的實(shí)際背景,了解橢圓在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.
2.掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì).
橢圓的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)通常以小題形式考查,直線與橢圓的位置關(guān)系主要出現(xiàn)在解答題中.題型主要以選擇、填空題為主,一般為中檔題,橢圓方程的求解經(jīng)常出現(xiàn)在解答題的第一問.



1.橢圓的概念
平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數(shù):
(1)若a>c,則集合P為橢圓;
(2)若a=c,則集合P為線段;
(3)若ab>0)
+=1
(a>b>0)
圖形


性質(zhì)
范圍
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
對稱性
對稱軸:坐標(biāo)軸  對稱中心:原點(diǎn)
頂點(diǎn)坐標(biāo)
A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)

長軸A1A2的長為2a;短軸B1B2的長為2b
焦距
|F1F2|=2c
離心率
e=∈(0,1)
a,b,c的關(guān)系
a2=b2+c2

概念方法微思考
1.在橢圓的定義中,若2a=|F1F2|或2a0,m≠n)表示的曲線是橢圓.( √ )
(3)+=1(a≠b)表示焦點(diǎn)在y軸上的橢圓.( × )
(4)+=1(a>b>0)與+=1(a>b>0)的焦距相等.( √ )
題組二 教材改編
2.橢圓+=1的焦距為4,則m等于(  )
A.4 B.8
C.4或8 D.12
答案 C
解析 當(dāng)焦點(diǎn)在x軸上時(shí),10-m>m-2>0,
10-m-(m-2)=4,∴m=4.
當(dāng)焦點(diǎn)在y軸上時(shí),m-2>10-m>0,m-2-(10-m)=4,∴m=8.
∴m=4或8.
3.過點(diǎn)A(3,-2)且與橢圓+=1有相同焦點(diǎn)的橢圓的方程為(  )
A.+=1 B.+=1
C.+=1 D.+=1
答案 A
解析 由題意知c2=5,可設(shè)橢圓方程為+=1(λ>0),則+=1,解得λ=10或λ=-2(舍去),
∴所求橢圓的方程為+=1.
4.已知點(diǎn)P是橢圓+=1上y軸右側(cè)的一點(diǎn),且以點(diǎn)P及焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的面積等于1,則點(diǎn)P的坐標(biāo)為__________________.
答案 或
解析 設(shè)P(x,y),由題意知c2=a2-b2=5-4=1,
所以c=1,則F1(-1,0),F(xiàn)2(1,0).
由題意可得點(diǎn)P到x軸的距離為1,
所以y=±1,把y=±1代入+=1,
得x=±,又x>0,所以x=,
所以P點(diǎn)坐標(biāo)為或.
題組三 易錯(cuò)自糾
5.若方程+=1表示橢圓,則m的取值范圍是(  )
A.(-3,5) B.(-5,3)
C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)
答案 C
解析 由方程表示橢圓知
解得-30)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,過F2的直線l交C于A,B兩點(diǎn),若△AF1B的周長為4,則C的方程為(  )
A.+=1 B.+y2=1
C.+=1 D.+=1
答案 A
解析 ∵△AF1B的周長為4,∴4a=4,
∴a=,∵離心率為,∴c=1,
∴b==,∴橢圓C的方程為+=1.
故選A.

第1課時(shí) 橢圓及其性質(zhì)
題型一 橢圓的定義及應(yīng)用
1.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是(  )

A.橢圓 B.雙曲線
C.拋物線 D.圓
答案 A
解析 由條件知|PM|=|PF|,
∴|PO|+|PF|=|PO|+|PM|=|OM|=R>|OF|.
∴P點(diǎn)的軌跡是以O(shè),F(xiàn)為焦點(diǎn)的橢圓.
2.過橢圓4x2+y2=1的一個(gè)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),則A與B和橢圓的另一個(gè)焦點(diǎn)F2構(gòu)成的△ABF2的周長為(  )
A.2 B.4
C.8 D.2
答案 B
解析 橢圓方程變形為+=1,
∴橢圓長軸長2a=2,∴△ABF2的周長為4a=4.
3.橢圓+y2=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則|PF2|等于(  )
A. B.
C. D.4
答案 A
解析 F1(-,0),∵PF1⊥x軸,
∴P,∴|PF1|=,
∴|PF2|=4-=.
4.(2018·鞍山調(diào)研)設(shè)F1,F(xiàn)2分別是橢圓+=1的左、右焦點(diǎn),P為橢圓上任意一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|-|PF1|的最小值為________.
答案 -5
解析 由橢圓的方程可知F2(3,0),由橢圓的定義可得|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,當(dāng)且僅當(dāng)M,P,F(xiàn)2三點(diǎn)共線時(shí)取得等號,又|MF2|==5,2a=10,∴|PM|-|PF1|≥5-10=-5,即|PM|-|PF1|的最小值為-5.
思維升華 橢圓定義的應(yīng)用技巧
(1)橢圓定義的應(yīng)用主要有:求橢圓的標(biāo)準(zhǔn)方程,求焦點(diǎn)三角形的周長、面積及弦長、最值和離心率等.
(2)通常定義和余弦定理結(jié)合使用,求解關(guān)于焦點(diǎn)三角形的周長和面積問題.

題型二 橢圓的標(biāo)準(zhǔn)方程

命題點(diǎn)1 定義法
例1 (1)已知A(-1,0),B是圓F:x2-2x+y2-11=0(F為圓心)上一動(dòng)點(diǎn),線段AB的垂直平分線交BF于P,則動(dòng)點(diǎn)P的軌跡方程為(  )
A.+=1 B.-=1
C.-=1 D.+=1
答案 D
解析 由題意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=2>|AF|=2,∴點(diǎn)P的軌跡是以A,F(xiàn)為焦點(diǎn)的橢圓,且a=,c=1,∴b=,∴動(dòng)點(diǎn)P的軌跡方程為+=1,故選D.
(2)在△ABC中,A(-4,0),B(4,0),△ABC的周長是18,則頂點(diǎn)C的軌跡方程是(  )
A.+=1(y≠0) B.+=1(y≠0)
C.+=1(y≠0) D.+=1(y≠0)
答案 A
解析 由|AC|+|BC|=18-8=10>8知,頂點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(A,B,C不共線).設(shè)其方程為+=1(a>b>0),則a=5,c=4,從而b=3.由A,B,C不共線知y≠0.故頂點(diǎn)C的軌跡方程是+=1(y≠0).


命題點(diǎn)2 待定系數(shù)法
例2 (1)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對稱軸,且經(jīng)過兩點(diǎn),(,),則橢圓方程為__________.
答案 +=1
解析 設(shè)橢圓方程為mx2+ny2=1(m,n>0,m≠n).

解得m=,n=.
∴橢圓方程為+=1.
(2)一個(gè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對稱軸,焦點(diǎn)F1,F(xiàn)2在x軸上,P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為________________.
答案 +=1
解析 ∵橢圓的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,∴可設(shè)橢圓方程為+=1(a>b>0),∵P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,
∴又a2=b2+c2,
∴a=2,b=,c=,
∴橢圓方程為+=1.
思維升華 (1)求橢圓的標(biāo)準(zhǔn)方程多采用定義法和待定系數(shù)法.
(2)利用定義法求橢圓方程,要注意條件2a>|F1F2|;利用待定系數(shù)法要先定形(焦點(diǎn)位置),再定量,也可把橢圓方程設(shè)為mx2+ny2=1(m>0,n>0,m≠n)的形式.
跟蹤訓(xùn)練1 (1)已知橢圓G的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為,且橢圓G上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為(  )
A.+=1 B.+=1
C.+=1 D.+=1
答案 A
解析 依題意設(shè)橢圓G的方程為+=1(a>b>0),∵橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為12,∴2a=12,∴a=6,∵橢圓的離心率為,∴e===,即 =,解得b2=9,∴橢圓G的方程為+=1,故選A.
(2)過點(diǎn)(,-),且與橢圓+=1有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為________________.
答案 +=1
解析 ∵所求橢圓與橢圓+=1的焦點(diǎn)相同,
∴其焦點(diǎn)在y軸上,且c2=25-9=16.
設(shè)它的標(biāo)準(zhǔn)方程為+=1(a>b>0).
∵c2=16,且c2=a2-b2,故a2-b2=16.①
又點(diǎn)(,-)在所求橢圓上,
∴+=1,
即+=1.②
由①②得b2=4,a2=20,
∴所求橢圓的標(biāo)準(zhǔn)方程為+=1.

題型三 橢圓的幾何性質(zhì)

命題點(diǎn)1 求離心率的值(或范圍)
例3 (1)(2018·通遼模擬)設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為(  )
A. B. C. D.
答案 D
解析 方法一 如圖,

在Rt△PF2F1中,∠PF1F2=30°,|F1F2|=2c,
∴|PF1|==,
|PF2|=2c·tan 30°=.
∵|PF1|+|PF2|=2a,
即+=2a,可得c=a.
∴e==.
方法二 (特殊值法):
在Rt△PF2F1中,令|PF2|=1,
∵∠PF1F2=30°,∴|PF1|=2,|F1F2|=.
∴e===.
(2)橢圓+=1(a>b>0),F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P為橢圓上一點(diǎn),|OP|=a,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率為(  )
A. B. C. D.
答案 D
解析 設(shè)P(x,y),則|OP|2=x2+y2=,
由橢圓定義得,|PF1|+|PF2|=2a,
∴|PF1|2+2|PF1||PF2|+|PF2|2=4a2,
又∵|PF1|,|F1F2|,|PF2|成等比數(shù)列,
∴|PF1|·|PF2|=|F1F2|2=4c2,
則|PF1|2+|PF2|2+8c2=4a2,
∴(x+c)2+y2+(x-c)2+y2+8c2=4a2,
整理得x2+y2+5c2=2a2,
即+5c2=2a2,整理得=,
∴橢圓的離心率e==.
(3)已知橢圓+=1(a>b>c>0,a2=b2+c2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于(a-c),則橢圓的離心率e的取值范圍是__________.
答案 
解析 因?yàn)閨PT|=(b>c),
而|PF2|的最小值為a-c,
所以|PT|的最小值為.
依題意,有≥(a-c),
所以(a-c)2≥4(b-c)2,所以a-c≥2(b-c),
所以a+c≥2b,所以(a+c)2≥4(a2-c2),
所以5c2+2ac-3a2≥0,所以5e2+2e-3≥0. ①
又b>c,所以b2>c2,所以a2-c2>c2,
所以2e20)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),若橢圓上存在點(diǎn)P使=,求該橢圓的離心率的取值范圍.
解 由=得=.
又由正弦定理得=,所以=,即|PF1|=|PF2|.
又由橢圓定義得|PF1|+|PF2|=2a,
所以|PF2|=,|PF1|=,
因?yàn)镻F2是△PF1F2的一邊,
所以有2c-0(0

英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部