
第1講
講
生活中的立體圖形及其展開(kāi)與折疊
概 述
【教學(xué)建議】
立體圖形是生活中常見(jiàn)的圖形,學(xué)習(xí)立體圖形要從培養(yǎng)學(xué)生的空間能力入手,教學(xué)過(guò)程中可以結(jié)合積木、橡皮泥,生活中的實(shí)物等工具,更有直觀性.
【知識(shí)導(dǎo)圖】
教學(xué)過(guò)程
一、導(dǎo)入
【教學(xué)建議】
本節(jié)課與生活實(shí)際聯(lián)系緊密,教師在授課過(guò)程中可以結(jié)合“觀察法”、“折紙法”、“排除法”等各種方法進(jìn)行.
在課堂授課前,老師可以自己準(zhǔn)備一些柱體、椎體、球體、小立方體等,便于學(xué)生直觀的了解學(xué)習(xí)內(nèi)容.授課過(guò)程中一定要強(qiáng)調(diào)學(xué)生幾何圖形的畫(huà)法和立體圖形的特征等,部分內(nèi)容需要學(xué)生記憶的可以結(jié)合表格法對(duì)比進(jìn)行.
二、知識(shí)講解
考點(diǎn)1 生活中的立體圖形
【教學(xué)建議】
通過(guò)前面的引導(dǎo),得到常見(jiàn)幾何體的劃分,建議用生活中的實(shí)際物體,讓學(xué)生產(chǎn)生直觀印象.
常見(jiàn)的幾何體及其特點(diǎn)
長(zhǎng)方體:有8個(gè)頂點(diǎn),12條棱,6個(gè)面,且各面都是長(zhǎng)方形(正方形是特殊的長(zhǎng)方形)正方體是特殊的長(zhǎng)方體.
棱柱:上下兩個(gè)面稱(chēng)為棱柱的底面,其它各面稱(chēng)為側(cè)面,長(zhǎng)方體是四棱柱.
圓柱:有上下兩個(gè)底面和一個(gè)側(cè)面,兩個(gè)底面是半徑相等的圓.
圓錐:有一個(gè)底面和一個(gè)頂點(diǎn),且側(cè)面展開(kāi)圖是扇形.
球:由一個(gè)面圍成的幾何體
考點(diǎn)2 展開(kāi)與折疊
展開(kāi)與折疊
棱柱:如圖1所示的棱柱,上底面是五邊形A'B'C'D'E',下底面是五邊形ABCDE,這兩個(gè)五邊形的大小形狀都相同,這個(gè)棱柱有5個(gè)側(cè)面,當(dāng)它為直棱柱時(shí),5個(gè)側(cè)面都是長(zhǎng)方形,當(dāng)它為斜棱柱時(shí),5個(gè)側(cè)面都是平行四邊形,在棱柱中任何相鄰的兩個(gè)面的交線都叫做棱柱的棱,其中相鄰的兩個(gè)側(cè)面的交線都叫做棱柱的側(cè)棱,圖1中的棱柱有15條棱,其中有5條側(cè)棱,這5條側(cè)棱的長(zhǎng)相等,將這個(gè)棱柱展開(kāi)得一個(gè)長(zhǎng)方形(圖2是圖1中棱柱的側(cè)面展開(kāi)圖)反過(guò)來(lái)可以將一個(gè)長(zhǎng)方形折疊成一個(gè)棱柱的側(cè)面.
當(dāng)一個(gè)棱柱的底面是三角形時(shí),稱(chēng)為三棱柱,當(dāng)一個(gè)棱柱的底面是四邊形時(shí),稱(chēng)為四棱柱,(長(zhǎng)方體正方體都是四棱柱)當(dāng)一個(gè)棱柱的底面是五邊形時(shí),稱(chēng)為五棱柱(圖1就是五棱柱)………當(dāng)一個(gè)棱柱的底面是n邊形時(shí),稱(chēng)為n棱柱,它有2n個(gè)頂點(diǎn),3n條棱,n十2個(gè)面(其中2個(gè)底面,n個(gè)側(cè)面.)
圓柱和圓錐的側(cè)面展開(kāi)圖:圓柱的側(cè)面展開(kāi)圖是一個(gè)長(zhǎng)方形,圓柱的底面周長(zhǎng)和高分別是這個(gè)長(zhǎng)方形的長(zhǎng)與寬,圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,這個(gè)扇形的半徑就是圓錐的母線(即圓錐的頂點(diǎn)與圓錐底面上任意一點(diǎn)的連線,而扇形的弧長(zhǎng)就是圓錐底面圓的周長(zhǎng),反過(guò)來(lái),可以將一個(gè)扇形圍成一個(gè)圓錐的側(cè)面.
【教學(xué)建議】
老師可以準(zhǔn)備一些圓柱、圓錐、正方體等實(shí)物,讓學(xué)生裁剪一下,了解圖形的展開(kāi)與折疊的過(guò)程.
三 、例題精析
類(lèi)型一 幾何體類(lèi)型的劃分
例題1
1、下面這些基本圖形和你很熟悉,試一試在括號(hào)里寫(xiě)出它們的名稱(chēng).
( ) ( ) ( ) ( ) ( )
(2)將這些幾何體分類(lèi),并寫(xiě)出分類(lèi)的理由.
【解析】
【總結(jié)與反思】
例題2
如圖所示,上海世博會(huì)中國(guó)國(guó)家館“東方之冠”是世界建筑史上的經(jīng)典,請(qǐng)寫(xiě)出圖中含有的立體圖形:
【解析】
【總結(jié)與反思】
類(lèi)型二 物體和立體圖形的對(duì)應(yīng)關(guān)系
例題1
圖1是一些具體的物體圖形--三棱鏡、方磚、帆布帳篷、筆筒、鉛錘、糧囤、天文臺(tái),圖2是一些立體圖形,找出圖1中與圖2中立體圖形相似的實(shí)物序號(hào).
【解析】
【總結(jié)與反思】
類(lèi)型三 棱柱
例題1
五棱柱有 條棱,有 個(gè)頂點(diǎn), 個(gè)面.
【解析】
【總結(jié)與反思】
例題1
例題1
類(lèi)型四 平面圖形旋轉(zhuǎn)成立體圖形
如圖的幾何體是下面( )平面圖形繞軸旋轉(zhuǎn)一周得到的( )
A B C D
【解析】
【總結(jié)與反思】
類(lèi)型五 棱柱與棱錐的展開(kāi)與折疊
例題1
如圖,四種圖形各是哪種立體圖形的表面展開(kāi)所形成的?畫(huà)出相應(yīng)的四種立體圖形.
【解析】
【總結(jié)與反思】
類(lèi)型六 正方體展開(kāi)與折疊
例題1
將一個(gè)立方體的盒子展開(kāi),以下各示意圖中可能是它的表面展開(kāi)圖的是( )
【解析】
【總結(jié)與反思】
類(lèi)型七 求立體圖形的表面積和體積
例題1
如圖是一無(wú)蓋長(zhǎng)方體盒子的展開(kāi)圖(重疊部分不計(jì)),則該無(wú)蓋長(zhǎng)方體的容積為( )
A.4 B.3 C.8 D.12
【解析】
【總結(jié)與反思】
四 、課堂運(yùn)用
基礎(chǔ)
1. 下列幾何體中,屬于圓錐的是( ).
A B C D
2.十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡(jiǎn)單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱(chēng)為歐拉公式.請(qǐng)你觀察下列幾種簡(jiǎn)單多面體模型,解答下列問(wèn)題:
小題1:(1)根據(jù)上面多面體模型,完成表格中的空格:
(2)你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是 .
(3)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)大8,且有30條棱,則這個(gè)多面體的面數(shù)是 .
(4)某個(gè)玻璃飾品的外形是簡(jiǎn)單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,設(shè)該多面體外表三角形的個(gè)數(shù)為個(gè),八邊形的個(gè)數(shù)為個(gè),=_____
3. 在棱柱中( )
A.只有兩個(gè)面平行 B.所有的棱都平行
C.所有的面都是平行四邊形 D.兩底面平行,且各側(cè)棱也互相平行
4.觀察下圖,請(qǐng)把左邊的圖形繞著給定的直線旋轉(zhuǎn)一周后可能形成的幾何體選出來(lái)( )
鞏固
1. 下列圖形中,是柱體的有___ _ ____.(填序號(hào))
2. 如果一個(gè)多面體的一個(gè)面是多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形,那么這個(gè)多面體叫做棱錐.如圖是一個(gè)四棱柱和一個(gè)六棱錐,它們各有12條棱.下列棱柱中和九棱錐的棱數(shù)相等的是( )
A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
3. 如圖所示繞直線m旋轉(zhuǎn)一周所形成的幾何體是( )
拔高
1. 回答下列問(wèn)題:
(1)如圖所示的甲、乙兩個(gè)平面圖形能折什么幾何體?
(2)由多個(gè)平面圍成的幾何體叫做多面體.若一個(gè)多面體的面數(shù)為,頂點(diǎn)個(gè)數(shù)為,棱數(shù)為,分別計(jì)算第(1)題中兩個(gè)多面體的的值?你發(fā)現(xiàn)什么規(guī)律?
(3)應(yīng)用上述規(guī)律解決問(wèn)題:一個(gè)多面體的頂點(diǎn)數(shù)比面數(shù)大8,且有50條棱,求這個(gè)幾何體的面數(shù).
2. 有一正方體木塊,它的六個(gè)面分別標(biāo)上數(shù)字 1—6,下圖是這個(gè)正方體木塊從不同面所觀察到的數(shù)字情況.數(shù)字2對(duì)面的數(shù)字是 .
3. 下列圖中,左邊的圖形是立方體的表面展開(kāi)圖,把它折疊成立方體,它會(huì)變右邊的( )
A
BABBBB
C
CCC
D
4. 在一次剪紙活動(dòng)中,小聰依次剪出6張正方形紙片拼成如圖所示的圖形,若小聰所拼得的圖形中正方形①的面積為1,且正方形⑥與正方形③面積相等,那么正方形⑤的面積為_(kāi)_______.
五 、課堂小結(jié)
基礎(chǔ)
1. 圓柱、圓錐、球的共同點(diǎn)是_____________________________;
2. 假如我們把筆尖看作一個(gè)點(diǎn),當(dāng)筆尖在紙上移動(dòng)時(shí),就能畫(huà)出線,說(shuō)明了______________,時(shí)鐘秒針旋轉(zhuǎn)時(shí),形成一個(gè)圓面,這說(shuō)明了_______________,三角板繞它的一條直角邊旋轉(zhuǎn)一周,形成一個(gè)圓錐體,這說(shuō)明了___________________;
3. 一個(gè)幾何體的表面展開(kāi)圖如圖所示, 則這個(gè)幾何體是( )
A.四棱錐 B.四棱柱 C.三棱錐 D.三棱柱
鞏固
1. 如圖,是一個(gè)正方體紙盒的展開(kāi)圖,若在其中三個(gè)正方形A、B、C中分別填入適當(dāng)?shù)臄?shù),使得它們折成正方體后相對(duì)的面上兩個(gè)數(shù)互為相反數(shù),則填入正方形A、B、C中的三個(gè)數(shù)一次是( )
A.1、-3、0 B.0、-3、1 C.-3、0、1 D.-3、1、0
2.下圖是一個(gè)正方體的展開(kāi)圖。
(1)在正方體的展開(kāi)圖的正方形內(nèi)填入適當(dāng)?shù)臐h字,使之與相對(duì)的面上的字具有相反意義。
(2)請(qǐng)你移動(dòng)圖中的一個(gè)小正方形,使它仍然是正方體的表面展開(kāi)圖(請(qǐng)寫(xiě)出兩種移動(dòng)方法).
(3)若圖中一個(gè)小正方形的邊長(zhǎng)為1cm,那么原立方體的棱長(zhǎng)是多少?表面積是多少?
3.圖1是一個(gè)小正方體的側(cè)面展開(kāi)圖,小正方體從圖2所示的位置依次翻到第1格,第2格,第3格,這時(shí)小正方體朝上的一面的字是( )
A.奧 B.運(yùn) C.圣 D.火
拔高
1. 如圖,小華用若干個(gè)正方形和長(zhǎng)方形準(zhǔn)備拼成一個(gè)長(zhǎng)方體的展開(kāi)圖.拼完后,小華看來(lái)看去總覺(jué)得所拼圖形似乎存在問(wèn)題.
(1)請(qǐng)你幫小華分析一下拼圖是否存在問(wèn)題:若有多余塊,則把圖中多余部分涂黑;若還缺少,則直接在原圖中補(bǔ)全;
(2)若圖中的正方形邊長(zhǎng)為,長(zhǎng)方形的長(zhǎng)為,寬為,請(qǐng)直接寫(xiě)出修正后所折疊而成的長(zhǎng)方體的體積: .
2. 已知一個(gè)直四棱柱的底面邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)都是,回答下列問(wèn)題:
(1)這個(gè)直四棱柱一共有幾個(gè)面?幾個(gè)頂點(diǎn)?
(2)這個(gè)直四棱柱有多少條棱?
(3)將這個(gè)直四棱柱的側(cè)面展開(kāi)成一個(gè)平面圖形,這個(gè)圖形是什么形狀?面積是多少?
(4)這個(gè)直四棱柱的體積是多少?
3、把正方體的6個(gè)面分別涂上不同的顏色,并畫(huà)上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況列表如下:
現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個(gè)正方體拼成一個(gè)在同一平面上放置的長(zhǎng)方體,如下圖所示,那么長(zhǎng)方體的下底面共有______朵花.
七 、教學(xué)反思
適用學(xué)科
初中數(shù)學(xué)
適用年級(jí)
初一
適用區(qū)域
北師版區(qū)域
課時(shí)時(shí)長(zhǎng)(分鐘)
120
知識(shí)點(diǎn)
1、幾何體類(lèi)型的劃分2、物體和立體圖形的對(duì)應(yīng)關(guān)系3、棱柱4、平面圖形旋轉(zhuǎn)成立體圖形5、棱柱與棱錐的展開(kāi)與折疊6、正方體展開(kāi)與折疊7、求立體圖形的表面積和體積
教學(xué)目標(biāo)
1、會(huì)區(qū)分常見(jiàn)的立體圖形,并說(shuō)明它們的特征.
2、能區(qū)分幾何體的表面展開(kāi)圖,會(huì)判斷最短路徑.
3、會(huì)判斷正方體的相對(duì)面.
教學(xué)重點(diǎn)
能區(qū)分幾何體的表面展開(kāi)圖,會(huì)判斷最短路徑.
教學(xué)難點(diǎn)
能區(qū)分幾何體的表面展開(kāi)圖,會(huì)判斷最短路徑.
多面體
頂點(diǎn)數(shù)(V)
面數(shù)(F)
棱數(shù)(E)
四面體
4
4
6
長(zhǎng)方體
8
6
12
正八面體
6
8
12
正十二面體
顏色
紅
黃
藍(lán)
白
紫
綠
花朵數(shù)
6
5
4
3
2
1
這是一份數(shù)學(xué)七年級(jí)上冊(cè)第一章 豐富的圖形世界1.1 生活中的立體圖形教案,共18頁(yè)。教案主要包含了教學(xué)建議,知識(shí)導(dǎo)圖,總結(jié)與反思等內(nèi)容,歡迎下載使用。
這是一份數(shù)學(xué)七年級(jí)上冊(cè)第六章 數(shù)據(jù)的收集與整理綜合與測(cè)試教案設(shè)計(jì),共27頁(yè)。教案主要包含了教學(xué)建議,知識(shí)導(dǎo)圖,總結(jié)與反思等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學(xué)北師大版七年級(jí)上冊(cè)3.4 整式的加減教案及反思,共18頁(yè)。教案主要包含了教學(xué)建議,知識(shí)導(dǎo)圖,總結(jié)與反思等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功