
1.理解對頂角、同位角、內(nèi)錯角、同旁內(nèi)角的概念.
2.結(jié)合圖形識別同位角、內(nèi)錯角、同旁內(nèi)角.
3.經(jīng)歷操作、觀察、猜想、交流、推理等獲取信息的過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理的表達(dá)能力.
4.培養(yǎng)學(xué)生的空間想象能力和數(shù)學(xué)思維能力.
【教學(xué)重點】
同位角、內(nèi)錯角、同旁內(nèi)角的識別.
【教學(xué)難點】
分析圖形.
【教學(xué)過程】
一、情景導(dǎo)入,初步認(rèn)知
1.在同一平面內(nèi)的兩條直線有幾種位置關(guān)系?
2.經(jīng)過直線外一點怎樣畫出這條直線的平行線?
3.如果兩條直線都與第三條直線平行,那么這兩條直線互相平行,即如果b∥a,c∥a,那么b∥c.
[教學(xué)說明]對上節(jié)課的知識進(jìn)行復(fù)習(xí),為本節(jié)課的教學(xué)作準(zhǔn)備.
二、思考探究,獲取新知
探究1:對頂角
1.觀察思考:要求學(xué)生拿出事先準(zhǔn)備好的紙和剪刀,觀察剪刀剪開紙張的過程,隨著兩個把手之間的角逐漸變小,剪刀刃之間的角度也相應(yīng).我們把剪刀的構(gòu)成抽象為兩條直線,就是我們要研究的兩條相交直線所成的角的問題.將其簡單地表示為下圖:
2.圖中∠1和∠3、∠2和∠4它們有什么特征?
[歸納結(jié)論]有公共的頂點,其中一角的兩邊分別是另一個角兩邊的反向延長線,這樣的兩個角叫做對頂角.
3.∠1和∠3、∠2和∠4有什么關(guān)系?量一量或用其它的方法比較它們的大小.完成下面的問題.
∵∠1+∠2= ,
∠2+∠3=(鄰補角定義).
∴∠1=180°- ,
∠3=180°- (等式性質(zhì)),
∴∠1=∠3(等量代換);
或者∵∠1與∠2互補,∠3與∠2互補(鄰補角定義),
∴∠1=∠3(同角的補角相等).
由上面推理可知,對頂角的性質(zhì)有什么性質(zhì)?
[歸納結(jié)論]對頂角相等.
探究2:同位角、內(nèi)錯角、同旁內(nèi)角
如圖.兩條直線l1、l2被第三條直線l3所截,構(gòu)成了8個角.
1.根據(jù)已有知識,你能找到對頂角嗎?
那么除了對頂角,角與角還有哪些位置關(guān)系呢?我們一起來探討一下.
2.觀察∠1與∠5的位置:
(1)它們在被截直線l1、l2的什么位置?
(2)它們在截線l3的什么位置?
學(xué)生回答:它們在被截直線l1、l2的上方,在截線l3的右側(cè).
教師歸納:它們在被截直線l1、l2的同側(cè),在截線l3的同旁.我們把這樣的一對角叫做同位角.
[歸納結(jié)論]同位角概念:在第三條直線l3的同旁,并且分別位于直線l1、l2的相同一側(cè),這樣的一對角叫做同位角.
類似位置關(guān)系的角在圖中還有嗎?如果有,請找出來.
3.觀察∠3與∠5的位置:
(1)它們在被截直線l1、l2的什么位置?
(2)它們在截線l3的什么位置?
[歸納結(jié)論]內(nèi)錯角概念:在第三條直線l3的異側(cè),并且分別位于直線l1、l2之間,這樣的一對角叫做內(nèi)錯角.
類似位置關(guān)系的角在圖中還有嗎?如果有,請找出來.
4.觀察∠3與∠6的位置:
(1)它們在被截直線l1、l2的什么位置?
(2)它們在截線l3的什么位置?
[歸納結(jié)論]同旁內(nèi)角概念:在第三條直線l3的同旁,并且分別位于直線l1、l2之間,這樣的一對角叫做同旁內(nèi)角.
類似位置關(guān)系的角在圖中還有嗎?如果有,請找出來.
5.兩只手的食指和拇指在同一平面內(nèi),它們構(gòu)成的一對角可以看成是什么角?類似地,你還能用兩只手的手指構(gòu)成同位角和同旁內(nèi)角嗎?
[教學(xué)說明]采用分類分步的方法,從簡單開始探索.由于同位角、內(nèi)錯角、同旁內(nèi)角的名稱已經(jīng)固定,所以探索的重點應(yīng)放在發(fā)現(xiàn)位置關(guān)系和用準(zhǔn)確詞語概括這種位置關(guān)系上,按照觀察—描述—歸納—再現(xiàn)的流程,認(rèn)識同位角.在認(rèn)識了同位角的概念后,自主探索同旁內(nèi)角、內(nèi)錯角.這是一種用發(fā)展的眼光認(rèn)識事物的過程.
三、運用新知,深化理解
1.見教材P77例1.
2.下列圖形中,∠1和∠2是對頂角的是(C)
A. B. C. D.
3.如圖,∠1與∠2是同位角的對數(shù)有(D)
A.1對 B.2對 C.3對 D.4對
4.如圖,直線AB、CD被DE所截,則∠1和 是同位角,∠1和 是內(nèi)錯角,∠1和 是同旁內(nèi)角,如果∠1=∠5.那么∠1 ∠3.
答案:∠3,∠5,∠2,=
5.如圖,∠1和∠4是AB、 被 所截得的 角;∠3和∠5是 、 被 所截得的 角;∠2和∠5是 、
被 所截得的角;AC、BC被AB所截得的同旁內(nèi)角是 .
答案:CD,BE,同位角;AB,BC,AC,同旁內(nèi)角;AB,CD,AC,內(nèi)錯角;∠4和∠5
6.如圖,AB、DC被BD所截得的內(nèi)錯角是,AB、CD被AC所截是的內(nèi)錯角是 ,AD、BC被BD所截得的內(nèi)錯角是 , AD、BC被AC所截得的內(nèi)錯角是 .
答案:∠1和∠5;∠4和∠8;∠6和∠2;∠3和∠7
7.如圖,圖中共有幾對內(nèi)錯角?這幾對內(nèi)錯角分別是哪兩條直線被哪一條直線所截構(gòu)成的?
解:BC、BE被DF截得的兩對內(nèi)錯角;∠DFB和∠CDF;∠FDB和∠DFE;AC、AD被BE截得的兩對內(nèi)錯角:∠AFE和∠CEF,∠AEF和∠EFD
第7題圖 第8題圖
8.如圖,直線AB、CD被EF所截,如果∠1與∠2互補,且∠1=110°,那么∠3、∠4的度數(shù)是多少?
解:∠3=70°,∠4=70°
9.如圖請指出圖中的同旁內(nèi)角.(提示:請仔細(xì)讀題、認(rèn)真看圖)
解:∠1與∠5;∠4與∠6;∠1與∠A;∠5與∠A
[教學(xué)說明]學(xué)生在練習(xí)時,教師一定要強調(diào)找角時要緊抓定義.
四、師生互動,課堂小結(jié)
先小組內(nèi)交流收獲和感想,而后以小組為單位派代表進(jìn)行總結(jié).教師作以補充.
[課后作業(yè)]
1.布置作業(yè):教材“習(xí)題4.1”中第4、5、6、10題.
2.完成同步練習(xí)冊中本課時的練習(xí).
這是一份湘教版七年級下冊4.1.2相交直線所成的角教學(xué)設(shè)計及反思,共6頁。教案主要包含了知識與技能,過程與方法,情感態(tài)度,教學(xué)重點,教學(xué)難點,教學(xué)說明,歸納結(jié)論等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學(xué)湘教版七年級下冊4.1.2相交直線所成的角教案設(shè)計,共4頁。教案主要包含了情景導(dǎo)入,教學(xué)新知,課堂練習(xí),課堂總結(jié),作業(yè)布置等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學(xué)湘教版七年級下冊4.1.2相交直線所成的角公開課教案設(shè)計,共5頁。教案主要包含了知識與技能,過程與方法,情感態(tài)度,教學(xué)重點,教學(xué)難點,教學(xué)說明,歸納結(jié)論等內(nèi)容,歡迎下載使用。
注冊成功