
這是一份滬教版(五四制)(2024)六年級上冊(2024)1.1 有理數(shù)完美版教學(xué)ppt課件,共33頁。PPT課件主要包含了學(xué)習(xí)目標(biāo),拔河與相反數(shù),情景導(dǎo)入,相反數(shù)的定義,新知探究,概念歸納,典例剖析,練一練,課本例題,相反數(shù)的求法等內(nèi)容,歡迎下載使用。
1.能借助數(shù)軸知道只有符號不同的兩個數(shù)互為相反數(shù),知道互為相反數(shù)的一對數(shù)在數(shù)軸上位于原點的兩側(cè),且到原點的距離相等。
2.能夠利用相反數(shù)的概念求出一個數(shù)的相反數(shù),會進行簡單的簡化符號(重點).
3.知道相反數(shù)的幾何意義和代數(shù)意義,培養(yǎng)學(xué)生的歸納能力以及數(shù)形結(jié)合思想(難點).
學(xué)校運動會開始啦,兩支隊伍開始拔河,中間地面上的白線為起始點.當(dāng)繩子上的紅色布條向左移動1米,記為-1米,則左邊的隊伍獲勝;當(dāng)紅色布條向右移動1米,記為+1米,則右邊的隊伍獲勝.-1米與+1米有什么特殊的地方嗎?它們就是一對相反數(shù).
在數(shù)軸上,與原點的距離是3個單位長度的點有幾個?這些點表示的數(shù)分別是多少?
數(shù)軸上與原點的距離是3個單位的長度的點有兩個,它們表示對數(shù)分別是3和-3.
3和-3只有符號不同,一正一負;從數(shù)軸上看,表示3和-3的兩個點位于原點的兩側(cè),并且與原點的距離相等。
解題秘方:主要考查了相反數(shù),正確掌握相反數(shù)的定義是解題關(guān)鍵.
選項 C,在一個數(shù)前面添加一個“-”號,就變成原數(shù)的相反數(shù),原說法正確,故此選項不合題意;選項D,若兩個數(shù)互為相反數(shù),則它們的相反數(shù)也互為相反數(shù),原說法正確,故此選項不合題意.
2.下列說法中,正確的有( ? ? )①有理數(shù)的相反數(shù)是正數(shù);②非負數(shù)的相反數(shù)是正數(shù);③相反數(shù)等于它本身的數(shù)只有0.A. 1個 B. 2個C. 3個 D. 0個
一、相反數(shù)定義特別解讀1.“ 只有”是指除了符號不同之外,其他部分完全相同.2.“互為”的意義是指相反數(shù)是成對出現(xiàn)的,不能單獨存在.3.數(shù)軸上與原點的距離是a(a 是一個正數(shù))的點有兩個,分別在原點的左右兩邊,它們所表示的數(shù)互為相反數(shù).
二、相反數(shù)的性質(zhì)任何一個數(shù)都有相反數(shù),而且只有一個;正數(shù)的相反數(shù)是負數(shù);負數(shù)的相反數(shù)是正數(shù);0 的相反數(shù)是0 .
一般地,數(shù)a和數(shù)-a互為相反數(shù),也就是數(shù)a的相反數(shù)是-a,數(shù)-a的相反數(shù)是a,這里的a表示一個有理數(shù)。在任意一個數(shù)前面添上“-”號,新的數(shù)就表示原數(shù)的相反數(shù)。
3.分別寫出下列各數(shù)的相反數(shù).
(2)-3的相反數(shù)是3;
(3)0的相反數(shù)是0;
(4)0.15的相反數(shù)是-0.15;
例.化簡下列各數(shù):(1)-(-3); (2)-(+2); (3)+(-8);(4)-[+(-2)]; (5)-{-[-(+a)]}.
解題秘方:緊扣多重符號的化簡法則逐步化簡.
方法技巧:1 . 定義法:省略全部“+”號,然后由相反數(shù)的定義由內(nèi)到外依次化簡.2. 規(guī)律法:簡記為“奇負偶正”.
解:(1)-(-3)=3;(2)-(+2)=-2;(3)+(-8)=-8;(4)-[ +(- 2)]=-(-2)=2;(5)-{ -[ -(+a)]}=-{-[-a]}=-a.
5. 下列各組數(shù):① -1 與+(-1);② +(+1)與-1;③ -(+4)與-(-4);④ -(+1.7)與+(-1.7);⑤ - [ +(- 9 )] 與-[-(+9)].其中互為相反數(shù)的有( )A. 2 組 B. 3 組 C. 4 組 D. 5 組
6.化簡下列各數(shù)的符號.
(1)-(+5);(2)-(-5);(3)+(+5);
(4)+(-5);(5)-[-(+5)];(6)+[-(-5)].
解:(1)-(+5)=-5;
(2)-(-5)=5;
(3)+(+5)=5;
(4)+(-5)=-5;
(5)-[-(+5)]=5;
(6)+[-(-5)]=5.
特別提醒1. a可以是正數(shù),0或負數(shù).2. 當(dāng)a 是一個負數(shù)時,-a是正數(shù),故帶負號的數(shù)不一定是負數(shù).
1. 多重符號化簡的依據(jù) a 的相反數(shù)為-a.2. 多重符號的化簡根據(jù)相反數(shù)的性質(zhì)由內(nèi)向外化簡. 當(dāng)前面的符號是“+”號時,省略“+”號直接寫;當(dāng)前面的符號是“-”號時,去掉“-”號,寫出括號內(nèi)的數(shù)的相反數(shù).
1.下列說法正確的是( )
A.正數(shù)和負數(shù)互為相反數(shù);B.表示相反意義的兩個量互為相反數(shù);C.任何有理數(shù)都有相反數(shù);D.一個數(shù)的相反數(shù)一定是負數(shù)。
2.簡化下列各數(shù)的符號:
3.設(shè)a表示一個有理數(shù),如果a=-a,那么表示a的點在數(shù)軸上的什么位置?
解:a=-a,說明a的相反數(shù)等于它自己,所以a為原點。
1.有理數(shù)2 024的相反數(shù)是( B )
3. 若一個數(shù)的相反數(shù)等于它本身,則這個數(shù)是( C )
4. A , B 是數(shù)軸上兩點,則點 A , B 表示的數(shù)互為相反數(shù)的是( B)
5. 下列結(jié)論中,正確的有( A )①任何數(shù)都不等于它的相反數(shù);②符號相反的數(shù)互為相反數(shù);③數(shù)軸上互為相反數(shù)的兩個數(shù)對應(yīng)的點到原點的距離
相等;④ a 與- a 互為相反數(shù);⑤若有理數(shù) a , b 互為相反數(shù),則它們一定異號.
6. 如圖,數(shù)軸上表示3的點是點 ,表示-3的點是
點 ,它們到原點 O 的距離 (填“相等”或
“不相等”),所以3與-3互為 ?.
7. -(+5)表示 的相反數(shù),即-(+5)= ;-(-5)表示 的相反數(shù),即-(-5)= ?.
8. (1)如果 a =-13,那么- a = ?;(2)如果- a =-5.4,那么 a = ?;(3)如果- x =-6,那么 x = ?;(4)如果- x =9,那么-(- x )= ?.
9. 已知點 A 表示的數(shù)是6,把點 A 向左移動兩個單位長度得
到點 B ,點 C 與點 B 表示的數(shù)互為相反數(shù),則點 B 表示的
數(shù)是 ,點 C 表示的數(shù)是 ?.
(2)說明上面各數(shù)與其相反數(shù)對應(yīng)的點在數(shù)軸上的位置特點.
解: 原數(shù)與其相反數(shù)對應(yīng)的點到原點的距離相等.
11. [2024合肥廬陽區(qū)月考]下列各組數(shù)中,互為相反數(shù)的是( D)
12. [2024北京海淀區(qū)月考]若一個數(shù)的相反數(shù)不是正數(shù),則這個數(shù)一定是( B )
13. 如圖,數(shù)軸的單位長度為1,若點 D , H 表示的數(shù)互為相反數(shù),則點 A 表示的數(shù)是 ?.
14. 【新考法·分類討論法】在數(shù)軸上,點 A 表示的數(shù)是1,點 B 、點 C 表示的數(shù)互為相反數(shù),且點 C 與點 A 之間的距離為3,則點 B 表示的數(shù)是 ?.
①當(dāng)+5前面有2 024個負號時,化簡后的結(jié)果是多少?②當(dāng)-5前面有2 025個負號時,化簡后的結(jié)果是多少?③你能總結(jié)出什么規(guī)律?
解: ①當(dāng)+5前面有2 024個負號時,化簡后的結(jié)果是5.
②當(dāng)-5前面有2 025個負號時,化簡后的結(jié)果是5.
③一個數(shù)的前面有偶數(shù)個負號,化簡結(jié)果是其本身;
一個數(shù)的前面有奇數(shù)個負號,化簡結(jié)果是這個數(shù)的相
反數(shù).
16. 【新趨勢·學(xué)科內(nèi)綜合】如圖是一個正方體紙盒的展開圖,請把-22,12,22,-2,-12,2分別填在六個正方形中,使得折成正方體后,相對面上的兩個數(shù)互為相反數(shù).
解: 答案不唯一,如圖.
17. 已知有理數(shù) a , b 所對應(yīng)的點在數(shù)軸上的位置如圖所示.(1)在數(shù)軸上表示出 a , b 的相反數(shù)所對應(yīng)的點的位置;
(2)若數(shù) b 對應(yīng)的點與其相反數(shù)對應(yīng)的點相距20個單位長度,求 b 的值;
解: (2)因為數(shù) b 對應(yīng)的點與其相反數(shù)對應(yīng)的點相距20個單位長度,且數(shù) b 對應(yīng)的點在原點的左側(cè),所以 b =-10.
(3)在(2)的條件下,若數(shù) a 對應(yīng)的點與數(shù) b 的相反數(shù)對應(yīng)的點相距5個單位長度,求 a 的值.
解: (3)由(2)及題意知- b =10,且 a 在- b 的左側(cè).因為數(shù) a 對應(yīng)的點與數(shù)- b 對應(yīng)的點相距5個單位長度,所以 a =5.
這是一份滬教版(五四制)(2024)六年級上冊(2024)1.5 有理數(shù)的混合運算精品教學(xué)ppt課件,共18頁。PPT課件主要包含了學(xué)習(xí)目標(biāo),復(fù)習(xí)導(dǎo)入,隨堂檢測等內(nèi)容,歡迎下載使用。
這是一份數(shù)學(xué)六年級上冊(2024)1.3 有理數(shù)的乘法與除法優(yōu)秀教學(xué)ppt課件,共19頁。PPT課件主要包含了學(xué)習(xí)目標(biāo),情景導(dǎo)入,新知探究,倒數(shù)的定義,課本例題,練一練,有理數(shù)除法法則,概念歸納,有理數(shù)除法法則一,有理數(shù)除法法則二等內(nèi)容,歡迎下載使用。
這是一份數(shù)學(xué)六年級上冊(2024)1.2 有理數(shù)的加法與減法獲獎教學(xué)課件ppt,共23頁。PPT課件主要包含了學(xué)習(xí)目標(biāo),情景導(dǎo)入,新知探究,有理數(shù)加法法則,概念歸納,課本例題,練一練,課堂練習(xí),分層練習(xí)-基礎(chǔ),分層練習(xí)-鞏固等內(nèi)容,歡迎下載使用。
注冊成功