
第四章 指數(shù)函數(shù)與對數(shù)函數(shù)章末梳理知識結(jié)構(gòu)·理脈絡(luò)要點(diǎn)梳理·晰精華(ab)r=arb(0,+∞)(0,1)增減(0,+∞)(1,0)(0,+∞)(7)指數(shù)函數(shù)與對數(shù)函數(shù)的關(guān)系對數(shù)函數(shù)y=logax(a>0且a≠1)與指數(shù)函數(shù)______________________互為反函數(shù),其圖象關(guān)于直線________對稱y=ax(a>0且a≠1)y=x素養(yǎng)突破·提技能數(shù)學(xué)運(yùn)算核心素養(yǎng) 計算求值:[分析] (1)直接利用指數(shù)冪的運(yùn)算化簡求值;(2)利用對數(shù)的運(yùn)算化簡求值.[歸納提升] 指數(shù)、對數(shù)的運(yùn)算應(yīng)遵循的原則(1)指數(shù)的運(yùn)算首先注意化簡順序,一般負(fù)指數(shù)先轉(zhuǎn)化成正指數(shù),根式化為分?jǐn)?shù)指數(shù)冪運(yùn)算;其次若出現(xiàn)分式則要注意分子、分母因式分解以達(dá)到約分的目的.(2)對數(shù)的運(yùn)算首先注意公式應(yīng)用過程中范圍的變化,前后要等價,熟練地運(yùn)用對數(shù)的運(yùn)算性質(zhì)并結(jié)合對數(shù)恒等式、換底公式是對數(shù)計算、化簡、證明的常用技巧.直觀想象核心素養(yǎng) 函數(shù)y=2log4(1-x)的圖象大致是( )C[解析] 方法一:當(dāng)x=0時,y=0,故可排除選項(xiàng)A,由1-x>0,得x
微信掃碼,快速注冊
注冊成功