第七章隨機變量及其分布7.4 二項分布與超幾何分布課后篇鞏固提升基礎(chǔ)達標練1.甲、乙兩人進行羽毛球比賽,比賽采取五局三勝制,無論哪一方先勝三局比賽都結(jié)束,假定甲每局比賽獲勝的概率均為,則甲以31的比分獲勝的概率為(  )A. B. C. D.解析當甲以31的比分獲勝時,說明甲乙兩人在前三場比賽中,甲只贏了兩局,乙贏了一局,第四局甲贏,所以甲以31的比分獲勝的概率為P=21-×=3×,故選A.答案A2.已知X~B(n,p),E(X)=8,D(X)=1.6,np的值分別為(  )A.1000.08 B.200.4C.100.2 D.100.8解析因為X~B(n,p),所以解得n=10,p=0.8.答案D3.已知隨機變量X~B(100,0.2),D(4X+3)的值為 (  )A.64 B.256 C.259 D.320解析X~B(100,0.2),D(X)=100×0.2×0.8=16.D(4X+3)=16D(X)=16×16=256.答案B4.口袋里放有大小相同的兩個紅球和一個白球,每次有放回地摸取一個球,定義數(shù)列{an},an=如果Sn為數(shù)列{an}的前n項和,那么S7=3的概率為 (  )A. B.C. D.解析S7=3,7次摸球中有2次摸取紅球,5次摸取白球,而每次摸取紅球的概率為,摸取白球的概率為,S7=3的概率為,故選B.答案B5.(2020河北高二月考)10個排球中有6個正品,4個次品.從中抽取4,則正品數(shù)比次品數(shù)少的概率為(  )A. B. C. D.解析正品數(shù)比次品數(shù)少,有兩種情況:0個正品、4個次品或1個正品、3個次品,由超幾何分布的概率可知,0個正品、4個次品時,概率為.1個正品、3個次品時,概率為.所以正品數(shù)比次品數(shù)少的概率為.答案A6.(2019江蘇高二期末)10件產(chǎn)品中有2件次品,從中隨機抽取3,則恰有1件次品的概率是    . 解析設(shè)事件A從中隨機抽取3,則恰有1件次品,P(A)=.答案7.4次獨立重復(fù)試驗中,事件A發(fā)生的概率相同,若事件A至少發(fā)生1次的概率為,則在1次試驗中事件A發(fā)生的概率為     . 解析設(shè)在一次試驗中,事件A發(fā)生的概率為p,由題意知,1-(1-p)4=,所以(1-p)4=,p=.答案8.某市公租房的房源位于A,B,C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的.該市的4位申請人中恰有2人申請A片區(qū)房源的概率為     . 解析每位申請人申請房源為一次試驗,這是4次獨立重復(fù)試驗,設(shè)申請A片區(qū)房源為A,P(A)=,所以恰有2人申請A片區(qū)的概率為.答案9.網(wǎng)上購物逐步走進大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為56的人去A網(wǎng)購物,擲出點數(shù)小于5的人去B網(wǎng)購物,且參加者必須從A網(wǎng)和B網(wǎng)選擇一家購物.(1)求這4個人中恰有1人去A網(wǎng)購物的概率;(2)ξ,η分別表示這4個人中去A網(wǎng)和B網(wǎng)購物的人數(shù),X=ξη,求隨機變量X的分布列.依題意,得這4個人中,每個人去A網(wǎng)購物的概率為,B網(wǎng)購物的概率為.設(shè)4個人中恰有i人去A網(wǎng)購物為事件Ai(i=0,1,2,3,4),P(Ai)=i4-i(i=0,1,2,3,4).(1)4個人中恰有1人去A網(wǎng)購物的概率為3=.(2)X的所有可能取值為0,3,4,P(X=0)=P(A0)+P(A4)=0×4+4×0=,P(X=3)=P(A1)+P(A3)=1×3+3×1=,P(X=4)=P(A2)=22=.所以隨機變量X的分布列為X034P  能力提升練1.種植某種樹苗,成活率為0.9.若種植這種樹苗5,則恰好成活4棵的概率約為(  )A.0.33 B.0.66 C.0.5 D.0.45解析根據(jù)n次獨立重復(fù)試驗中,事件A恰好發(fā)生k次的概率公式得到種植這種樹苗5,則恰好成活4棵的概率為·0.94(1-0.9)0.33,故選A.答案A2.4次獨立重復(fù)試驗中,隨機事件A恰好發(fā)生1次的概率不大于其恰好發(fā)生兩次的概率,則事件A在一次試驗中發(fā)生的概率p的取值范圍是(  )A.[0.4,1] B.(0,0.4] C.(0,0.6] D.[0.6,1)解析由題意得,·p(1-p)3p2(1-p)2,4(1-p)6p.0<p1,0.4p1.答案A3.一次測量中出現(xiàn)正誤差和負誤差的概率都是,5次測量中恰好2次出現(xiàn)正誤差的概率是(  )A. B. C. D.解析由獨立重復(fù)試驗的定義知,5次測量中恰好2次出現(xiàn)正誤差的概率P=.答案A4.設(shè)隨機變量X~B(2,p),隨機變量Y~B(3,p),P(X1)=,P(Y1)=    . 解析X~B(2,p),P(X1)=1-P(X=0)=1-(1-p)2=,解得p=.Y~B(3,p),P(Y1)=1-P(Y=0)=1-(1-p)3=.答案5.(2020濰坊高三月考)8件產(chǎn)品,其中3件是次品,從中任取3,X表示取得次品的件數(shù),P(X1)=     . 解析根據(jù)題意,P(X1)=P(X=0)+P(X=1)=.答案6.位于坐標原點的一個質(zhì)點P按下述規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向為向上或向右,并且向上、向右移動的概率都是.質(zhì)點P移動五次后位于點(2,3)的概率是       . 解析由于質(zhì)點每次移動一個單位,移動的方向為向上或向右,移動五次后位于點(2,3),所以質(zhì)點P必須向右移動兩次,向上移動三次,故其概率為3·2=5=5=.答案7.(2020廣西高三模擬)甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的8道題,規(guī)定每次考試都從備選的10道題中隨機抽出4道題進行測試,只有選中的4個題目均答對才能入選.(1)求甲恰有2個題目答對的概率;(2)求乙答對的題目數(shù)X的分布列;(3)試比較甲、乙兩人平均答對的題目數(shù)的大小,并說明理由.(1)甲在備選的10道題中,答對其中每道題的概率都是,選中的4個題目甲恰有2個題目答對的概率P=.(2)由題意知乙答對的題目數(shù)X的可能取值為2,3,4,P(X=2)=,P(X=3)=,P(X=4)=,X的分布列為X234P (3)乙平均答對的題目數(shù)E(X)=2×+3×+4×.甲答對題目數(shù)Y~B4,,甲平均答對的題目數(shù)E(Y)=4×.E(X)=E(Y),甲平均答對的題目數(shù)等于乙平均答對的題目數(shù).8.甲、乙兩人各射擊一次,擊中目標的概率分別是.假設(shè)兩人射擊是否擊中目標相互之間沒有影響,每人每次射擊是否擊中目標相互之間也沒有影響.(1)求甲射擊4,至少有1次未擊中目標的概率.(2)求兩人各射擊4,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.(3)假設(shè)每人連續(xù)2次未擊中目標,則終止其射擊.:乙恰好射擊5次后,被終止射擊的概率是多少?(1)甲連續(xù)射擊4,至少有1次未擊中目標為事件A1,則事件A1的對立事件甲連續(xù)射擊4,全部擊中目標.由題意知,射擊4次相當于做4次獨立重復(fù)試驗.P()=4=.所以P(A1)=1-P()=1-.所以甲連續(xù)射擊4,至少有1次未擊中目標的概率為.(2)甲射擊4,恰好有2次擊中目標為事件A2,乙射擊4,恰好有3次擊中目標為事件B2,P(A2)=×2×1-2=,P(B2)=×3×1-1=.由于甲、乙射擊相互獨立,P(A2B2)=P(A2)P(B2)=.所以兩人各射擊4,甲恰有2次擊中目標且乙恰有3次擊中目標的概率為.(3)乙恰好射擊5次后,被終止射擊為事件A3,乙第i次射擊未擊中為事件Di(i=1,2,3,4,5),A3=D5D4D1D2),P(Di)=.由于各事件相互獨立,P(A3)=P(D5)P(D4)·P()P(D1D2)=×1-=.所以乙恰好射擊5次后,被終止射擊的概率為.素養(yǎng)培優(yōu)練(2020福建高三模擬)一款小游戲的規(guī)則如下:每輪游戲要進行三次,每次游戲都需要從裝有大小相同的2個紅球、3個白球的袋中隨機摸出2個球,若摸出的兩個都是紅球出現(xiàn)3次獲得200,若摸出兩個都是紅球出現(xiàn)1次或2次獲得20,若摸出兩個都是紅球出現(xiàn)0次則扣除10(即獲得-10).(1)設(shè)每輪游戲中出現(xiàn)摸出兩個都是紅球的次數(shù)為X,X的分布列;(2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了,請運用概率統(tǒng)計的相關(guān)知識分析解釋上述現(xiàn)象.(1)每次游戲,出現(xiàn)兩個都是紅球的概率為P=.X可能的取值為0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列為X0123P (2)設(shè)每輪游戲得分為Y.(1),Y的分布列為X-1020200P E(Y)=-10×+20×+200×=-1.69.這表明,獲得分數(shù)Y的均值為負.因此,多次游戲之后大多數(shù)人的分數(shù)減少了.

相關(guān)教案

人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教案及反思:

這是一份人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教案及反思,共16頁。教案主要包含了本節(jié)內(nèi)容分析,學(xué)情整體分析,教學(xué)活動準備,教學(xué)活動設(shè)計等內(nèi)容,歡迎下載使用。

選擇性必修 第三冊7.4 二項分布與超幾何分布教案設(shè)計:

這是一份選擇性必修 第三冊7.4 二項分布與超幾何分布教案設(shè)計,共13頁。教案主要包含了本節(jié)內(nèi)容分析,學(xué)情整體分析,教學(xué)活動準備,教學(xué)活動設(shè)計等內(nèi)容,歡迎下載使用。

人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教案設(shè)計:

這是一份人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教案設(shè)計,共10頁。

英語朗讀寶

相關(guān)教案 更多

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布第一課時教案設(shè)計

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布第一課時教案設(shè)計

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教學(xué)設(shè)計

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教學(xué)設(shè)計

高中人教A版 (2019)7.4 二項分布與超幾何分布教案設(shè)計

高中人教A版 (2019)7.4 二項分布與超幾何分布教案設(shè)計

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教學(xué)設(shè)計

高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊7.4 二項分布與超幾何分布教學(xué)設(shè)計

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高中數(shù)學(xué)人教A版 (2019)選擇性必修 第三冊電子課本

7.4 二項分布與超幾何分布

版本: 人教A版 (2019)

年級: 選擇性必修 第三冊

切換課文
  • 課件
  • 教案
  • 試卷
  • 學(xué)案
  • 更多
所有DOC左下方推薦
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部