?專題18 二次函數(shù)綜合題
考點(diǎn)分析
【例1】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點(diǎn)A,與y軸交于B點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),在第一象限的拋物線上取一點(diǎn)D,過點(diǎn)D作DC⊥x軸于點(diǎn)C,交直線AB于點(diǎn)E.

(1)求拋物線的函數(shù)表達(dá)式
(2)是否存在點(diǎn)D,使得△BDE和△ACE相似?若存在,請求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;
(3)如圖2,F(xiàn)是第一象限內(nèi)拋物線上的動點(diǎn)(不與點(diǎn)D重合),點(diǎn)G是線段AB上的動點(diǎn).連接DF,F(xiàn)G,當(dāng)四邊形DEGF是平行四邊形且周長最大時,請直接寫出點(diǎn)G的坐標(biāo).
【答案】(1)y=﹣x2+x+3;(2)存在.點(diǎn)D的坐標(biāo)為(,3)或(,);(3)G(,).
【解析】
解:(1)在中,令,得,令,得,
,,
將,分別代入拋物線中,得:,解得:,
拋物線的函數(shù)表達(dá)式為:.
(2)存在.如圖1,過點(diǎn)作于,設(shè),則,,;
,,,,
和相似,

①當(dāng)時,,
,即:
,解得:(舍去),(舍去),,
,
②當(dāng)時,


,即:
,解得:(舍,(舍,,
,;
綜上所述,點(diǎn)的坐標(biāo)為,或,;
(3)如圖3,四邊形是平行四邊形
,
設(shè),,,,
則:,,
,即:,
,即:
過點(diǎn)作于,則

,即:
,即:
周長
,
當(dāng)時,周長最大值,
,.


【點(diǎn)睛】
此題考查二次函數(shù)綜合題,綜合難度較大,解答關(guān)鍵在于結(jié)合函數(shù)圖形進(jìn)行計(jì)算,再利用待定系數(shù)法求解析式,配合輔助線利用相似三角形的性質(zhì)進(jìn)行解答.

【例2】如圖,已知直線AB經(jīng)過點(diǎn)(0,4),與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是.
(1)求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo).
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在請說明理由.
(3)過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?

【答案】(1)直線y=x+4,點(diǎn)B的坐標(biāo)為(8,16);(2)點(diǎn)C的坐標(biāo)為(﹣,0),(0,0),(6,0),(32,0);(3)當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是18.
【解析】
(1)∵點(diǎn)A是直線與拋物線的交點(diǎn),且橫坐標(biāo)為-2,
,A點(diǎn)的坐標(biāo)為(-2,1),
設(shè)直線的函數(shù)關(guān)系式為y=kx+b,
將(0,4),(-2,1)代入得
解得
∴y=x+4
∵直線與拋物線相交,

解得:x=-2或x=8,
當(dāng)x=8時,y=16,
∴點(diǎn)B的坐標(biāo)為(8,16);
(2)存在.
∵由A(-2,1),B(8,16)可求得AB2==325
.設(shè)點(diǎn)C(m,0),
同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m-8)2+162=m2-16m+320,
①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
∴點(diǎn)C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0) 
(3)設(shè)M(a,a2),
則MN=,
又∵點(diǎn)P與點(diǎn)M縱坐標(biāo)相同,
∴x+4=a2,
∴x= ,
∴點(diǎn)P的橫坐標(biāo)為,
∴MP=a-,
∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+18,
∵-2≤6≤8,
∴當(dāng)a=6時,取最大值18,
∴當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是18





考點(diǎn)集訓(xùn)
1.已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)過點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;
(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動點(diǎn),當(dāng)面積最大時,求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)Q為線段OC上的一動點(diǎn),問:是否存在最小值?若存在,求岀這個最小值;若不存在,請說明理由.

【答案】(1)拋物線的表達(dá)式為:,頂點(diǎn);(2)證明見解析;(3)點(diǎn);(4)存在,的最小值為.
【解析】
(1)函數(shù)的表達(dá)式為:,
即:,解得:,
故拋物線的表達(dá)式為:,
則頂點(diǎn);
(2),,
∵A(1,0),B(3,0),∴ OB=3,OA=1,
∴AB=2,
∴,
又∵D(2,-1),
∴AD=BD=,
∴AM=MB=AD=BD,
∴四邊形ADBM為菱形,
又∵,
菱形ADBM為正方形;
(3)設(shè)直線BC的解析式為y=mx+n,
將點(diǎn)B、C的坐標(biāo)代入得:,
解得:,
所以直線BC的表達(dá)式為:y=-x+3,
過點(diǎn)P作y軸的平行線交BC于點(diǎn)N,
設(shè)點(diǎn),則點(diǎn)N,
則,
,故有最大值,此時,
故點(diǎn);
(4)存在,理由:
如圖,過點(diǎn)C作與y軸夾角為的直線CF交x軸于點(diǎn)F,過點(diǎn)A作,垂足為H,交y軸于點(diǎn)Q,
此時,
則最小值,
在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,
∴OF=,
∴F(-,0),
利用待定系數(shù)法可求得直線HC的表達(dá)式為:…①,
∵∠COF=90°,∠FOC=30°,
∴∠CFO=90°-30°=60°,
∵∠AHF=90°,
∴∠FAH=90°-60°=30°,
∴OQ=AO?tan∠FAQ=,
∴Q(0,),
利用待定系數(shù)法可求得直線AH的表達(dá)式為:…②,
聯(lián)立①②并解得:,
故點(diǎn),而點(diǎn),
則,
即的最小值為.

【點(diǎn)睛】
本題考查了二次函數(shù)的綜合題,涉及了待定系數(shù)法,解直角三角形的應(yīng)用,正方形的判定,最值問題等,綜合性較強(qiáng),有一定的難度,正確把握相關(guān)知識,會添加常用輔助線是解題的關(guān)鍵.
2.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;
(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點(diǎn)的坐標(biāo)為 :P1(,),P2(,),P3(,),P4(,).
【解析】
(1)如圖1,設(shè)拋物線與x軸的另一個交點(diǎn)為D,

由對稱性得:D(3,0),
設(shè)拋物線的解析式為:y=a(x-1)(x-3),
把A(0,3)代入得:3=3a,
a=1,
∴拋物線的解析式;y=x2-4x+3;
(2)如圖2,設(shè)P(m,m2-4m+3),

∵OE平分∠AOB,∠AOB=90°,
∴∠AOE=45°,
∴△AOE是等腰直角三角形,
∴AE=OA=3,
∴E(3,3),
易得OE的解析式為:y=x,
過P作PG∥y軸,交OE于點(diǎn)G,
∴G(m,m),
∴PG=m-(m2-4m+3)=-m2+5m-3,
∴S四邊形AOPE=S△AOE+S△POE,
=×3×3+PG?AE,
=+×3×(-m2+5m-3),
=-m2+m,
=(m-)2+,
∵-<0,
∴當(dāng)m=時,S有最大值是;
(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,

∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2-4m+3),
則-m2+4m-3=2-m,
解得:m=或,
∴P的坐標(biāo)為(,)或(,);
如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,

同理得△ONP≌△PMF,
∴PN=FM,
則-m2+4m-3=m-2,
解得:x=或;
P的坐標(biāo)為(,)或(,);
綜上所述,點(diǎn)P的坐標(biāo)是:(,)或(,)或(,)或(,).
點(diǎn)睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運(yùn)用配方法,解第(3)問時需要運(yùn)用分類討論思想和方程的思想解決問題.
3.如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點(diǎn),該拋物線的頂點(diǎn)為C.
(1)求此拋物線和直線的解析式;
(2)設(shè)直線與該拋物線的對稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過M作x軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)設(shè)點(diǎn)P是直線下方拋物線上的一動點(diǎn),當(dāng)面積最大時,求點(diǎn)P的坐標(biāo),并求面積的最大值.

【答案】(1)拋物線的解析式為,直線的解析式為,(2)或.(3)當(dāng)時,面積的最大值是,此時P點(diǎn)坐標(biāo)為.
【解析】
解:(1)∵拋物線經(jīng)過、兩點(diǎn),
∴,
∴,
∴拋物線的解析式為,
∵直線經(jīng)過、兩點(diǎn),
∴,解得:,
∴直線的解析式為,
(2)∵,
∴拋物線的頂點(diǎn)C的坐標(biāo)為,
∵軸,
∴,
∴,
①如圖,若點(diǎn)M在x軸下方,四邊形為平行四邊形,則,
設(shè),則,

∴,
∴,
解得:,(舍去),
∴,
②如圖,若點(diǎn)M在x軸上方,四邊形為平行四邊形,則,

設(shè),則,
∴,
∴,
解得:,(舍去),
∴,
綜合可得M點(diǎn)的坐標(biāo)為或.
(3)如圖,作軸交直線于點(diǎn)G,

設(shè),則,
∴,
∴,
∴當(dāng)時,面積的最大值是,此時P點(diǎn)坐標(biāo)為.
【點(diǎn)睛】
本題是二次函數(shù)綜合題,考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)求最值問題,以及二次函數(shù)與平行四邊形、三角形面積有關(guān)的問題.
4.已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)和的直線交拋物線的對稱軸于點(diǎn).
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)若點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,直接寫出滿足條件的點(diǎn)的坐標(biāo).

【答案】(1)拋物線的表達(dá)式為:,直線的表達(dá)式為:;(2)存在,理由見解析;點(diǎn)或或或.
【解析】
解:(1)二次函數(shù)表達(dá)式為:,
將點(diǎn)的坐標(biāo)代入上式并解得:,
故拋物線的表達(dá)式為:…①,
則點(diǎn),
將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線的表達(dá)式為:;
(2)存在,理由:
二次函數(shù)對稱軸為:,則點(diǎn),
過點(diǎn)作軸的平行線交于點(diǎn),

設(shè)點(diǎn),點(diǎn),
∵,
則,
解得:或5(舍去5),
故點(diǎn);
(3)設(shè)點(diǎn)、點(diǎn),,
①當(dāng)是平行四邊形的一條邊時,
點(diǎn)向左平移4個單位向下平移16個單位得到,
同理,點(diǎn)向左平移4個單位向下平移16個單位為,即為點(diǎn),
即:,,而,
解得:或﹣4,
故點(diǎn)或;
②當(dāng)是平行四邊形的對角線時,
由中點(diǎn)公式得:,,而,
解得:,
故點(diǎn)或;
綜上,點(diǎn)或或或.
【點(diǎn)睛】
本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖形的面積計(jì)算等,其中(3),要注意分類求解,避免遺漏.
5.如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)三點(diǎn),,.

(1)求拋物線的解析式和對稱軸;
(2)是拋物線對稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請?jiān)趫D1中探索);
(3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點(diǎn)坐標(biāo),若不存在請說明理由.(請?jiān)趫D2中探索)
【答案】(1),函數(shù)的對稱軸為:;(2)點(diǎn);(3)存在,點(diǎn)的坐標(biāo)為或.
【解析】
解:根據(jù)點(diǎn),的坐標(biāo)設(shè)二次函數(shù)表達(dá)式為:,
∵拋物線經(jīng)過點(diǎn),
則,解得:,
拋物線的表達(dá)式為: ,
函數(shù)的對稱軸為:;
連接交對稱軸于點(diǎn),此時的值為最小,

設(shè)BC的解析式為:,
將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式:得:
解得:
直線的表達(dá)式為:,
當(dāng)時,,
故點(diǎn);
存在,理由:
四邊形是以為對角線且面積為的平行四邊形,
則 ,
點(diǎn)在第四象限,故:則,
將該坐標(biāo)代入二次函數(shù)表達(dá)式得:
,
解得:或,
故點(diǎn)的坐標(biāo)為或.
【點(diǎn)睛】
本題考查二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖形的面積計(jì)算等,其中,求線段和的最小值,采取用的是點(diǎn)的對稱性求解,這也是此類題目的一般解法.
6.如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動,分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
【答案】(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.
【解析】
解:(1)∵拋物線(a≠0)經(jīng)過點(diǎn)A(3,0),點(diǎn)C(0,4),
∴,解得.
∴拋物線的解析式為.
(2)設(shè)直線AC的解析式為y=kx+b,
∵A(3,0),點(diǎn)C(0,4),
∴,解得.
∴直線AC的解析式為.
∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,
∴M點(diǎn)的坐標(biāo)為(m,).
∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,
∴點(diǎn)P的坐標(biāo)為(m,).
∴PM=PE-ME=()-()=.
∴PM=(0<m<3).
(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:
由題意,可得AE=3﹣m,EM=,CF=m,PF==,
若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:
①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),
∵m≠0且m≠3,∴m=.
∵△PFC∽△AEM,∴∠PCF=∠AME.
∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.
∴△PCM為直角三角形.
②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),
∵m≠0且m≠3,∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME.
∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.
∴△PCM為等腰三角形.
綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.
7.如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對稱軸上是否存在點(diǎn)P,使PA+PC的值最?。咳舸嬖?,求出點(diǎn)P的坐標(biāo),若不存在,說明理由;
(3)M是直線OC上方拋物線C2上的一個動點(diǎn),連接MO,MC,M運(yùn)動到什么位置時,△MOC面積最大?并求出最大面積.

【答案】(1)y=﹣x2+4x;(2)線段AC′的長度;(3)S△MOC最大值為.
【解析】
(1)令:y=x2﹣2x=0,則x=0或2,即點(diǎn)B(2,0),
∵C1、C2:y=ax2+bx開口大小相同、方向相反,則a=﹣1,
則點(diǎn)A(4,0),將點(diǎn)A的坐標(biāo)代入C2的表達(dá)式得:
0=﹣16+4b,解得:b=4,
故拋物線C2的解析式為:y=﹣x2+4x;
(2)聯(lián)立C1、C2表達(dá)式并解得:x=0或3,
故點(diǎn)C(3,3),
作點(diǎn)C關(guān)于C1對稱軸的對稱點(diǎn)C′(﹣1,3),
連接AC′交函數(shù)C2的對稱軸與點(diǎn)P,

此時PA+PC的值最小為:線段AC′的長度;
(3)直線OC的表達(dá)式為:y=x,
過點(diǎn)M作y軸的平行線交OC于點(diǎn)H,

設(shè)點(diǎn)M(x,﹣x2+4x),則點(diǎn)H(x,x),
則S△MOCMH×xC(﹣x2+4x﹣x)x2,
∵0,故x,
S△MOC最大值為.
【點(diǎn)睛】
本題考查了待定系數(shù)法求解析式,還考查了三角形的面積,要注意將三角形分解成兩個三角形求解;還要注意求最大值可以借助于二次函數(shù).
8.若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).
(1)求二次函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)到軸的距離;若不存在,請說明理由.

【答案】(l) ;(2)點(diǎn)的坐標(biāo)為;(3)點(diǎn)到軸的距離為 .
【解析】
(l)因?yàn)閽佄锞€過點(diǎn),∴,
又因?yàn)閽佄锞€過點(diǎn),

解,得
所以,拋物線表達(dá)式為
(2)連接,設(shè)點(diǎn).



由題意得
∴或(舍)

∴點(diǎn)的坐標(biāo)為.

(3)設(shè)直線的表達(dá)式為,因直線過點(diǎn)、
,

解,得
所以的表達(dá)式為
設(shè)存在點(diǎn)滿足題意,點(diǎn)的坐標(biāo)為,過點(diǎn)作軸,垂足為,作軸交于點(diǎn),則的坐標(biāo)為,,.
又軸

又∵


∴.
在中

解得:
所以點(diǎn)到軸的距離為
【點(diǎn)睛】
本題主要考查二次函數(shù)與一次函數(shù)的綜合性問題,難度系數(shù)高,但是是中考的必考知識點(diǎn),應(yīng)當(dāng)熟練地掌握.
9.如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.

(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個動點(diǎn),求面積的最大值;
(3)拋物線對稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請直接寫出所有點(diǎn)的坐標(biāo),若不存在請說明理由.
【答案】(1)二次函數(shù)的解析式為;(2)當(dāng)時,的面積取得最大值;(3)點(diǎn)的坐標(biāo)為,,.
【解析】
(1)∵二次函數(shù)y=ax2+bx+c經(jīng)過點(diǎn)A(﹣4,0)、B(2,0),C(0,6),
∴,
解得:,
所以二次函數(shù)的解析式為:y=;
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直線解析式為y=,
過點(diǎn)D作DN⊥x軸,交AE于點(diǎn)F,交x軸于點(diǎn)G,過點(diǎn)E作EH⊥DF,垂足為H,如圖,

設(shè)D(m,),則點(diǎn)F(m,),
∴DF=﹣()=,
∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH
=×DF×AG+×DF×EH
=×4×DF
=2×()
=,
∴當(dāng)m=時,△ADE的面積取得最大值為.
(3)y=的對稱軸為x=﹣1,設(shè)P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三種情況討論:
當(dāng)PA=PE時,=,解得:n=1,此時P(﹣1,1);
當(dāng)PA=AE時,=,解得:n=,此時點(diǎn)P坐標(biāo)為(﹣1,);
當(dāng)PE=AE時,=,解得:n=﹣2,此時點(diǎn)P坐標(biāo)為:(﹣1,﹣2).
綜上所述:P點(diǎn)的坐標(biāo)為:(﹣1,1),(﹣1,),(﹣1,﹣2).
點(diǎn)睛:本題主要考查二次函數(shù)的綜合問題,會求拋物線解析式,會運(yùn)用二次函數(shù)分析三角形面積的最大值,會分類討論解決等腰三角形的頂點(diǎn)的存在問題時解決此題的關(guān)鍵.
10.如圖,頂點(diǎn)為的二次函數(shù)圖象與x軸交于點(diǎn),點(diǎn)B在該圖象上,交其對稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對稱,連接、.
(1)求該二次函數(shù)的關(guān)系式.
(2)若點(diǎn)B在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動,請解答下列問題:
①連接,當(dāng)時,請判斷的形狀,并求出此時點(diǎn)B的坐標(biāo).
②求證:.

【答案】(1)二次函數(shù)的關(guān)系式為;(2)①是等腰直角三角形,此時點(diǎn)B坐標(biāo)為;②見解析
【解析】
解:(1)∵二次函數(shù)頂點(diǎn)為
∴設(shè)頂點(diǎn)式
∵二次函數(shù)圖象過點(diǎn)
∴,解得:
∴二次函數(shù)的關(guān)系式為
(2)設(shè)
∴直線解析式為:
∵交對稱軸l于點(diǎn)M
∴當(dāng)時,

∵點(diǎn)M、N關(guān)于點(diǎn)P對稱
∴,
∴,即
①∵


解得:

∴,
∴,,B
∴,
∴是等腰直角三角形,此時點(diǎn)B坐標(biāo)為.
②證明:如圖,設(shè)直線與x軸交于點(diǎn)D

∵、
設(shè)直線解析式為
∴ 解得:
∴直線:
當(dāng)時,,解得:

∵,軸
∴垂直平分


【點(diǎn)睛】
本題考查二次函數(shù)綜合,解題的關(guān)鍵是掌握待定系數(shù)法求解析式,再由題意得到等式進(jìn)行計(jì)算.
11.綜合與探究
如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個動點(diǎn),點(diǎn)N是拋物線上一動點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

【答案】(1);(2)3;(3).
【解析】
(1)拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0),
∴,
解得,
∴拋物線的函數(shù)表達(dá)式為;
(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,
∵點(diǎn)A的坐標(biāo)為(-2,0),∴OA=2,
由,得,∴點(diǎn)C的坐標(biāo)為(0,6),∴OC=6,
∴S△OAC=,
∵S△BCD=S△AOC,
∴S△BCD =,
設(shè)直線BC的函數(shù)表達(dá)式為,
由B,C兩點(diǎn)的坐標(biāo)得,解得,
∴直線BC的函數(shù)表達(dá)式為,
∴點(diǎn)G的坐標(biāo)為,
∴,
∵點(diǎn)B的坐標(biāo)為(4,0),∴OB=4,
∵S△BCD=S△CDG+S△BDG=,
∴S△BCD =,
∴,
解得(舍),,
∴的值為3;

(3)存在,如下圖所示,以BD為邊或者以BD為對角線進(jìn)行平行四邊形的構(gòu)圖,
以BD為邊時,有3種情況,
∵D點(diǎn)坐標(biāo)為,∴點(diǎn)N點(diǎn)縱坐標(biāo)為±,
當(dāng)點(diǎn)N的縱坐標(biāo)為時,如點(diǎn)N2,
此時,解得:(舍),
∴,∴;
當(dāng)點(diǎn)N的縱坐標(biāo)為時,如點(diǎn)N3,N4,
此時,解得:
∴,,
∴,;
以BD為對角線時,有1種情況,此時N1點(diǎn)與N2點(diǎn)重合,
∵,D(3,),
∴N1D=4,
∴BM1=N1D=4,
∴OM1=OB+BM1=8,
∴M1(8,0),
綜上,點(diǎn)M的坐標(biāo)為:.

【點(diǎn)睛】
本題考查的是二次函數(shù)的綜合題,涉及了待定系數(shù)法、三角形的面積、解一元二次方程、平行四邊形的性質(zhì)等知識,運(yùn)用了數(shù)形結(jié)合思想、分類討論思想等數(shù)學(xué)思想,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.
12.如圖,拋物線過點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為.

(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過點(diǎn)D作軸交直線于點(diǎn)E,點(diǎn)P為對稱軸上一動點(diǎn),當(dāng)線段的長度最大時,求的最小值;
(3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式;(2)的最小值為;(3)點(diǎn)Q的坐標(biāo):、.
【解析】
解:(1)將點(diǎn)B的坐標(biāo)為代入,
,
∴B的坐標(biāo)為,
將,代入,

解得,,
∴拋物線的解析式;
(2)設(shè),則,
,
∴當(dāng)時,有最大值為2,
此時,
作點(diǎn)A關(guān)于對稱軸的對稱點(diǎn),連接,與對稱軸交于點(diǎn)P.

,此時最小,
∵,
∴,
,
即的最小值為;
(3)作軸于點(diǎn)H,連接、、、、,

∵拋物線的解析式,
∴,
∵,
∴,
∵,
,
∴,
可知外接圓的圓心為H,


設(shè),
則,

∴符合題意的點(diǎn)Q的坐標(biāo):、.
【點(diǎn)睛】
本題考查了二次函數(shù),熟練運(yùn)用二次函數(shù)的圖象的性質(zhì)與一次函數(shù)的性質(zhì)以及圓周角定理是解題的關(guān)鍵.
13.如圖,拋物線與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過點(diǎn).點(diǎn)P、Q是拋物線上的動點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點(diǎn)E,當(dāng)與相似時,求點(diǎn)Q的坐標(biāo).

【答案】(1)拋物線的表達(dá)式為:;(2)有最大值,當(dāng)時,其最大值為;(3)點(diǎn)或.
【解析】
解:(1)函數(shù)的表達(dá)式為:,將點(diǎn)D坐標(biāo)代入上式并解得:,
故拋物線的表達(dá)式為:…①;
(2)設(shè)直線PD與y軸交于點(diǎn)G,設(shè)點(diǎn),

將點(diǎn)P、D的坐標(biāo)代入一次函數(shù)表達(dá)式:并解得:
直線PD的表達(dá)式為:,則,
,
∵,故有最大值,當(dāng)時,其最大值為;
(3)∵,∴,
∵,故與相似時,分為兩種情況:
①當(dāng)時,
,,,
過點(diǎn)A作AH⊥BC與點(diǎn)H,

,解得:,
則,則,
則直線OQ的表達(dá)式為:…②,
聯(lián)立①②并解得:(舍去負(fù)值),
故點(diǎn)
②時,
,
則直線OQ的表達(dá)式為:…③,
聯(lián)立①③并解得:,
故點(diǎn);
綜上,點(diǎn)或.
【點(diǎn)睛】
本題考查的是二次函數(shù)綜合運(yùn)用,涉及到解直角三角形、三角形相似、面積的計(jì)算等,其中(3),要注意分類求解,避免遺漏.
14.已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個動點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點(diǎn)P(4,6).
【解析】
(1)∵拋物線過點(diǎn)B(6,0)、C(﹣2,0),
∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),
將點(diǎn)A(0,6)代入,得:﹣12a=6,
解得:a=﹣,
所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
(2)如圖1,過點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,

設(shè)直線AB解析式為y=kx+b,
將點(diǎn)A(0,6)、B(6,0)代入,得:

解得:,
則直線AB解析式為y=﹣x+6,
設(shè)P(t,﹣t2+2t+6)其中0<t<6,
則N(t,﹣t+6),
∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
∴S△PAB=S△PAN+S△PBN
=PN?AG+PN?BM
=PN?(AG+BM)
=PN?OB
=×(﹣t2+3t)×6
=﹣t2+9t
=﹣(t﹣3)2+,
∴當(dāng)t=3時,△PAB的面積有最大值;
(3)△PDE為等腰直角三角形,
則PE=PD,
點(diǎn)P(m,-m2+2m+6),
函數(shù)的對稱軸為:x=2,則點(diǎn)E的橫坐標(biāo)為:4-m,
則PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故點(diǎn)P的坐標(biāo)為:(4,6)或(5-,3-5).
【點(diǎn)睛】
本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.


相關(guān)試卷

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:27 函數(shù)運(yùn)用提升(含答案):

這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:27 函數(shù)運(yùn)用提升(含答案),共25頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:17 反比例函數(shù)綜合題(含答案):

這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:17 反比例函數(shù)綜合題(含答案),共26頁。

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:16 一次函數(shù)綜合題(含答案):

這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:16 一次函數(shù)綜合題(含答案),共35頁。

英語朗讀寶

相關(guān)試卷 更多

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:09 圓(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:09 圓(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:06 反比例函數(shù)(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:06 反比例函數(shù)(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:05 二次函數(shù)(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:05 二次函數(shù)(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:04 一次函數(shù)(含答案)

2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:04 一次函數(shù)(含答案)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部