
?專題21 以平行四邊形為背景的證明與計算
考點分析
【例1】在中,BE平分交AD于點E.
(1)如圖1,若,,求的面積;
(2)如圖2,過點A作,交DC的延長線于點F,分別交BE,BC于點G,H,且.求證:.
【答案】(1);(2)證明見解析.
【解析】
(1)解:作于O,如圖1所示:
∵四邊形ABCD是平行四邊形,
∴,,,,
∴,,
∴,
∵BE平分,
∴,
∴,
∴,
∴的面積;
(2)證明:作交DF的延長線于P,垂足為Q,連接PB、PE,如圖2所示:
∵,,
∴,,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴,
在和中,,
∴,
∴,
∵,,
∴,,
∵,
∴,
在和中,,
∴,
∴,
∴.
【點睛】
本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)等知識;熟練掌握平行四邊形的性質(zhì),證明三角形全等是解題的關(guān)鍵.
【例2】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結(jié)BE.
(感知)如圖①,過點A作AF⊥BE交BC于點F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點M,過點M作FG⊥BE交BC于點F,交AD于點G.
(1)求證:BE=FG.
(2)連結(jié)CM,若CM=1,則FG的長為 ?。?br />
(應(yīng)用)如圖③,取BE的中點M,連結(jié)CM.過點C作CG⊥BE交AD于點G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為 ?。?br />
【答案】(1)證明見解析;(2)2,9.
【解析】
感知:∵四邊形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如圖②,
過點G作GP⊥BC于P,
∵四邊形ABCD是正方形,
∴AB=BC,∠A=∠ABC=90°,
∴四邊形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(2)由(1)知,F(xiàn)G=BE,
連接CM,
∵∠BCE=90°,點M是BE的中點,
∴BE=2CM=2,
∴FG=2,
故答案為:2.
應(yīng)用:同探究(2)得,BE=2ME=2CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四邊形CEGM=CG×ME=×6×3=9,
故答案為:9.
【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì),同角的余角相等,全等三角形的判定和性質(zhì),直角三角形的性質(zhì),熟練掌握相關(guān)的性質(zhì)與定理、判斷出CG=BE是解本題的關(guān)鍵.
考點集訓(xùn)
1.在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F.
(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時,求cos∠PCB的值;
③當(dāng)BP=9時,求BE?EF的值.
【答案】(1)證明見解析;(2)①證明見解析;②;③108.
【解析】
(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,
∵E是AD中點,
∴AE=DE,
在△ABE和△DCE中,,
∴△ABE≌△DCE(SAS);
(2)①在矩形ABCD,∠ABC=90°,
∵△BPC沿PC折疊得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF;
②當(dāng)AD=25時,
∵∠BEC=90°,
∴∠AEB+∠CED=90°,
∵∠AEB+∠ABE=90°,
∴∠CED=∠ABE,
∵∠A=∠D=90°,
∴△ABE∽△DEC,
∴,
設(shè)AE=x,
∴DE=25﹣x,
∴,
∴x=9或x=16,
∵AE<DE,
∴AE=9,DE=16,
∴CE=20,BE=15,
由折疊得,BP=PG,
∴BP=BF=PG,
∵BE∥PG,
∴△ECF∽△GCP,
∴,
設(shè)BP=BF=PG=y,
∴,
∴y=,
∴BP=,
在Rt△PBC中,PC=,cos∠PCB==;
③如圖,連接FG,
∵∠GEF=∠BAE=90°,
∵BF∥PG,BF=PG=BP,
∴?BPGF是菱形,
∴BP∥GF,
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴,
∴BE?EF=AB?GF=12×9=108.
【點睛】
此題是四邊形綜合題,主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),折疊的性質(zhì),利用方程的思想解決問題是解本題的關(guān)鍵.
2.如圖,在正方形中,點是的中點,連接,過點作交于點,交于點.
(1)證明:;
(2)連接,證明:.
【答案】(1)見解析;(2)見解析.
【解析】
證明:(1)四邊形是正方形,
,
又,
,
,
(2)如圖所示,延長交的延長線于,
是的中點,
,
又,
,
,
即是的中點,
又,
中,.
【點睛】
本題主要考查了正方形的性質(zhì)以及全等三角形的判定與性質(zhì),在應(yīng)用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當(dāng)輔助線構(gòu)造三角形.
3.如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
【答案】(1)證明見解析;(2).
【解析】
(1)證明:∵四邊形ABCD是矩形,O是BD的中點,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,BD⊥EF,
設(shè)BE=x,則?DE=x,AE=6-x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6-x)2,
解得:x= ,
∵BD= =2,
∴OB=BD=,
∵BD⊥EF,
∴EO==,
∴EF=2EO=.
點睛:本題主要考查了矩形的性質(zhì),菱形的性質(zhì)、勾股定理、全等三角形的判定與性質(zhì),熟練掌握矩形的性質(zhì)和勾股定理,證明三角形全等是解決問的關(guān)鍵
4.如圖,在四邊形中,,延長到E,使,連接交于點F,點F是的中點.求證:
(1).
(2)四邊形是平行四邊形.
【答案】(1)見解析;(2)見解析
【解析】
證明:(1)∵,
∴,
∵點F是的中點,
∴,
在與中,,
∴;
(2)∵,
∴,
∵,
∴,
∵,
∴四邊形是平行四邊形.
【點睛】
本題考查全等三角形的判定和性質(zhì)、平行四邊形判定定理,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì)、平行四邊形判定定理.
5.已知,如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
【答案】證明見解析
【解析】
證明:(1) ∵四邊形ABCD是平行四邊形,∴AB∥DC ,AD∥BC.
∴∠E=∠F,∠DAB=∠BCD.
∴∠EAM=∠FCN.
又∵AE=CF
∴△AEM≌△CFN(ASA).
(2) ∵由(1)△AEM≌△CFN
∴AM=CN.
又∵四邊形ABCD是平行四邊形
∴ABCD
∴BMDN.
∴四邊形BMDN是平行四邊形.
6.已知:在矩形中,是對角線,于點,于點;
(1)如圖1,求證:;
(2)如圖2,當(dāng)時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.
【答案】(1)詳見解析;(2)的面積的面積的面積的面積矩形面積的.
【解析】
(1)證明:∵四邊形是矩形,
∴, ,,
∴,
∵于點,于點,
∴,
在和中,,
∴,
∴;
(2)解:的面積的面積的面積的面積矩形面積的.
理由如下:
∵,
∴,
∵,
∴,
∵,
∴,
∴,,
∴的面積矩形的面積,
∵,
∴的面積矩形的面積;
作于,如圖所示:
∵,
∴,
∴的面積矩形的面積,
同理:的面積矩形的面積.
【點睛】
本題主要考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形中角所對的直角邊等于斜邊的一半,靈活應(yīng)用矩形的性質(zhì)證全等,熟練掌握直角三角形角的性質(zhì)是解題的關(guān)鍵.
7.如圖,矩形的頂點,分別在菱形的邊,上,頂點、在菱形的對角線上.
(1)求證:;
(2)若為中點,,求菱形的周長。
【答案】(1)證明見解析;(2)8.
【解析】
(1)∵四邊形EFGH是矩形,
∴EH=FG,EH∥FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四邊形ABCD是菱形,
∴AD∥BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE;
(2)連接EG,
∵四邊形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E為AD中點,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE∥BG,
∴四邊形ABGE是平行四邊形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周長=8.
【點睛】
本題考查了菱形的性質(zhì),矩形的性質(zhì),全等三角形的判定和性質(zhì),正確的識別作圖是解題的關(guān)鍵.
8.如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點M,過點B作BN∥MP交DC于點N.
(1)求證:AD2=DP?PC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.
【答案】(1)證明見解析;(2)四邊形PMBN是菱形,理由見解析;(3)
【解析】
解:(1)過點P作PG⊥AB于點G,
∴易知四邊形DPGA,四邊形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AG?GB,
即AD2=DP?PC;
(2)∵DP∥AB,
∴∠DPA=∠PAM,
由題意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB-∠PAM=∠APB-∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易證四邊形PMBN是平行四邊形,
∴四邊形PMBN是菱形;
(3)由于,
可設(shè)DP=k,AD=2k,
由(1)可知:AG=DP=k,PG=AD=2k,
∵PG2=AG?GB,
∴4k2=k?GB,
∴GB=PC=4k,
AB=AG+GB=5k,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴,
又易證:△PCE∽△MAE,AM=AB=,
∴
∴,
∴EF=AF-AE=AC-AC=AC,
∴.
【點睛】
本題考查相似三角形的綜合問題,涉及相似三角形的性質(zhì)與判定,菱形的判定,直角三角形斜邊上的中線的性質(zhì)等知識,綜合程度較高,需要學(xué)生靈活運用所學(xué)知識.
9.在正方形ABCD的邊AB上任取一點E,作EF⊥AB交BD于點F,取FD的中點G,連接EG、CG,如圖(1),易證 EG=CG且EG⊥CG
(1)將△BEF繞點B逆時針旋轉(zhuǎn)90°,如圖(2),則線段EG和CG有怎樣的數(shù)量關(guān)系和位置關(guān)系?請直接寫出你的猜想.
(2)將△BEF繞點B逆時針旋轉(zhuǎn)180°,如圖(3),則線段EG和CG又有怎樣的數(shù)量關(guān)系和位置關(guān)系.請寫出你的猜想,并加以證明.
【答案】(1)EG=CG;EG⊥CG(2)EG=CG;EG⊥CG,證明見解析.
【解析】
解:(1)EG=CG,EG⊥CG.
(2)EG=CG,EG⊥CG.
證明:延長FE交DC延長線于M,連MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四邊形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由圖(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF為等腰直角三角形
∴BE=EF,∠F=45°.
∴EF=CM.
∵∠EMC=90°,F(xiàn)G=DG,
∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
又∵FG=DG,
∠CMG=∠EMC=45°,
∴∠F=∠GMC.
∵在△GFE與△GMC中,
∴△GFE≌△GMC(SAS).
∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,F(xiàn)G=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
【點睛】
此題綜合考查了旋轉(zhuǎn)的性質(zhì)及全等三角形的判斷和性質(zhì),如何構(gòu)造全等的三角形是難點,因此難度較大.
考點:旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì).
10.(1)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面積.
【答案】(1)、(2)證明見解析(3)108
【解析】
(1)如圖1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如圖2,延長AD至F,使DF=BE,連接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形.
AE=AB-BE=12-4=8,
設(shè)DF=x,則AD=12-x,
根據(jù)(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,
解得:x=6.
則DE=4+6=10.
【點睛】本題考查了全等三角形的判定和性質(zhì)以及正方形的性質(zhì),解決本題的關(guān)鍵是注意每個題目之間的關(guān)系,正確作出輔助線.
11.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.
(1)當(dāng)∠OAD=30°時,求點C的坐標(biāo);
(2)設(shè)AD的中點為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時,求OA的長;
(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.
【答案】(1)點C的坐標(biāo)為(2,3+2);(2)OA=3;(3)OC的最大值為8,cos∠OAD=.
【解析】
(1)如圖1,過點C作CE⊥y軸于點E,
∵矩形ABCD中,CD⊥AD,
∴∠CDE+∠ADO=90°,
又∵∠OAD+∠ADO=90°,
∴∠CDE=∠OAD=30°,
∴在Rt△CED中,CE=CD=2,DE==2,
在Rt△OAD中,∠OAD=30°,
∴OD=AD=3,
∴點C的坐標(biāo)為(2,3+2);
(2)∵M為AD的中點,
∴DM=3,S△DCM=6,
又S四邊形OMCD=,
∴S△ODM=,
∴S△OAD=9,
設(shè)OA=x、OD=y(tǒng),則x2+y2=36,xy=9,
∴x2+y2=2xy,即x=y(tǒng),
將x=y(tǒng)代入x2+y2=36得x2=18,
解得x=3(負(fù)值舍去),
∴OA=3;
(3)OC的最大值為8,
如圖2,M為AD的中點,
∴OM=3,CM==5,
∴OC≤OM+CM=8,
當(dāng)O、M、C三點在同一直線時,OC有最大值8,
連接OC,則此時OC與AD的交點為M,過點O作ON⊥AD,垂足為N,
∵∠CDM=∠ONM=90°,∠CMD=∠OMN,
∴△CMD∽△OMN,
∴,即,
解得MN=,ON=,
∴AN=AM﹣MN=,
在Rt△OAN中,OA=,
∴cos∠OAD=.
【點睛】
本題是四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識點.
12.如圖①,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB
(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE= 度.
【答案】 (1)詳見解析
(2)詳見解析
(3)58
【解析】
解:(1)證明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,,
∴△BCP≌△DCP(SAS).
(2)證明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP.
∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.
∵∠1=∠2(對頂角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE.
∵AB∥CD,
∴∠DCE=∠ABC.
∴∠DPE=∠ABC.
(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=58°,
故答案為:58.
這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:23 以圓為背景的證明與計算(含答案),共22頁。
這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:22 以特殊的平行四邊形為背景的證明與計算(含答案),共26頁。
這是一份2022年中考數(shù)學(xué)基礎(chǔ)題提分講練專題:20 以相似三角形為背景的證明與計算(含答案),共32頁。
注冊成功