
?《平行四邊形》全章復(fù)習(xí)與鞏固(培優(yōu)篇)
(模擬與真題專練)
一、單選題
1.(2019·貴州·道真自治縣隆興中學(xué)三模)如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點(diǎn),則 AM 的最小值為( )
A.1 B.1.3 C.1.2 D.1.5
2.(2019·山東臺(tái)兒莊·二模)如圖,△ABC的周長(zhǎng)為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長(zhǎng)度為( ?。?br />
A. B.2 C. D.3
3.(2019·山東棗莊·二模)如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( ?。?br />
A.2 B.3 C.4 D.5
4.(2019·江蘇蘇州·中考模擬)如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長(zhǎng)為( )
A.2 B.3 C. D.
5.(2019·江蘇丹陽(yáng)·中考模擬)將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF,若AB=3,則菱形AECF的面積為( )
A.1 B.2 C.2 D.4
6.(2019·湖北·華中師大一附中美聯(lián)實(shí)驗(yàn)學(xué)校模擬預(yù)測(cè))如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③僅有當(dāng)∠DAP=45°或67.5°時(shí),△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個(gè).
A.2 B.3 C.4 D.5
7.(2019·陜西岐山·一模)如圖,在菱形ABCD中,兩對(duì)角線AC、BD交于點(diǎn)O,AC=8,BD=6,當(dāng)△OPD是以PD為底的等腰三角形時(shí),CP的長(zhǎng)為( )
A.2 B. C. D.
8.(2019·陜西商南·二模)如圖,矩形ABCD中,E是AD的中點(diǎn),將沿直線BE折疊后得到 ,延長(zhǎng)BG交CD于點(diǎn)F,若 則FD的長(zhǎng)為( )
A.1 B.2 C. D.
9.(2019·陜西·一模)如圖,在中,,平分,過(guò)點(diǎn)A作于點(diǎn)D,過(guò)點(diǎn)D作,分別交、于點(diǎn)E、F,若,則的長(zhǎng)為( )
A.10 B.8 C.7 D.6
10.(2019·廣東·廣州大學(xué)附屬中學(xué)一模)如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個(gè)數(shù)為( ?。?br />
A.5 B.4 C.3 D.2
二、填空題
11.(2020·遼寧葫蘆島·中考真題)一張菱形紙片的邊長(zhǎng)為,高等于邊長(zhǎng)的一半,將菱形紙片沿直線折疊,使點(diǎn)與點(diǎn)重合,直線交直線于點(diǎn),則的長(zhǎng)為_(kāi)___________.
12.(2020·湖南張家界·中考真題)如圖,正方形的邊長(zhǎng)為1,將其繞頂點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度到位置,使得點(diǎn)B落在對(duì)角線上,則陰影部分的面積是______.
13.(2020·云南·中考真題)已知四邊形是矩形,點(diǎn)是矩形的邊上的點(diǎn),且.若,,則的長(zhǎng)是___.
14.(2019·山東泰山·二模)如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對(duì)稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長(zhǎng)交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長(zhǎng)為_(kāi)____.
15.(2019·廣西金城江·二模)如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)的距離之和PA+PB的最小值為_(kāi)_____.
16.(2019·山東棗莊·模擬預(yù)測(cè))在正方形中,=6,連接,,是正方形邊上或?qū)蔷€上一點(diǎn),若=2,則的長(zhǎng)為_(kāi)___________ .
17.(2019·浙江杭州·模擬預(yù)測(cè))如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_(kāi)____.
18.(2019·云南寧洱·中考模擬)如圖,在平面直角坐標(biāo)系中,矩形ABCO的邊CO、OA分別在x軸、y軸上,點(diǎn)E在邊BC上,將該矩形沿AE折疊,點(diǎn)B恰好落在邊OC上的F處.若OA=8,CF=4,則點(diǎn)E的坐標(biāo)是_____.
19.(2019·北京順義·二模)如圖,在□ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H,則△DEF的面積是 .
20.(2019·內(nèi)蒙古通遼·中考模擬)如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過(guò)點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:①點(diǎn)M位置變化,使得∠DHC=60°時(shí),2BE=DM;②無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,∠CHM一定大于135°.其中正確結(jié)論的序號(hào)為_(kāi)____.
21.(2019·江蘇常州·一模)如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_(kāi)____.
22.(2019·廣東南山·三模)如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是 .
23.(2019·重慶渝中·三模)如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),將ΔEBF沿EF所在直線折疊得到ΔEB' F,連接B' D,則B' D的最小值是_____.
24.(2019·北京·清華附中一模)如圖,在正方形ABCD和正方形DEFG中,點(diǎn)G在CD上,DE=2,將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,得到正方形DE'F'G',此時(shí)點(diǎn)G'在AC上,連接CE',則CE'+CG'=_____.
三、解答題
25.(2019·四川·雅安中學(xué)一模)如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長(zhǎng)AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
26.(2019·浙江杭州·模擬預(yù)測(cè))在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,
請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).
(3) 如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若 , ,求四邊形的面積.
27.(2019·山東安丘·一模)如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說(shuō)明理由.
28.(2019·遼寧·丹東市第五中學(xué)二模)△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF,
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: ?。?br />
②BC,CD,CF之間的數(shù)量關(guān)系為: ??;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE,若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).
參考答案
1.C
【分析】
首先證明四邊形AEPF為矩形,可得AM=AP,最后利用垂線段最短確定AP的位置,利用面積相等求出AP的長(zhǎng),即可得AM.
【詳解】
在△ABC中,因?yàn)锳B2+AC2=BC2,
所以△ABC為直角三角形,∠A=90°,
又因?yàn)镻E⊥AB,PF⊥AC,
故四邊形AEPF為矩形,
因?yàn)镸?為?EF?中點(diǎn),
所以M?也是?AP中點(diǎn),即AM=AP,
故當(dāng)AP⊥BC時(shí),AP有最小值,此時(shí)AM最小,
由SΔABC=12×AB×AC=12×BC×AP,可得AP=,
AM=AP=
故本題正確答案為C.
【點(diǎn)撥】本題考查了矩形的判定和性質(zhì),確定出AP⊥BC時(shí)AM最小是解題關(guān)鍵.
2.C
【分析】
證明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根據(jù)題意求出DE,根據(jù)三角形中位線定理計(jì)算即可.
【詳解】
解:∵BN平分∠ABC,BN⊥AE,
∴∠NBA=∠NBE,∠BNA=∠BNE,
在△BNA和△BNE中,
,
∴△BNA≌△BNE,
∴BA=BE,
∴△BAE是等腰三角形,
同理△CAD是等腰三角形,
∴點(diǎn)N是AE中點(diǎn),點(diǎn)M是AD中點(diǎn)(三線合一),
∴MN是△ADE的中位線,
∵BE+CD=AB+AC=19-BC=19-7=12,
∴DE=BE+CD-BC=5,
∴MN=DE=.
故選C.
【點(diǎn)撥】本題考查的是三角形中位線定理、等腰三角形的性質(zhì),掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.
3.D
【分析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個(gè)角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;
②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計(jì)算OC=和OD的長(zhǎng),可得BD的長(zhǎng);
③因?yàn)椤螧AC=90°,根據(jù)平行四邊形的面積公式可作判斷;
④根據(jù)三角形中位線定理可作判斷;
⑤根據(jù)同高三角形面積的比等于對(duì)應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.
【詳解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等邊三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正確;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四邊形ABCD是平行四邊形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正確;
③由②知:∠BAC=90°,
∴S?ABCD=AB?AC,
故③正確;
④由②知:OE是△ABC的中位線,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正確;
⑤∵四邊形ABCD是平行四邊形,
∴OA=OC=,
∴S△AOE=S△EOC=OE?OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正確;
本題正確的有:①②③④⑤,5個(gè),
故選D.
【點(diǎn)撥】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計(jì)算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問(wèn)題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.
4.A
【分析】
如圖,延長(zhǎng)FD到G,使DG=BE,連接CG、EF,證△GCF≌△ECF,得到GF=EF,再利用勾股定理計(jì)算即可.
【詳解】
解:如圖,延長(zhǎng)FD到G,使DG=BE,連接CG、EF
∵四邊形ABCD為正方形,在△BCE與△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)
∴CG=CE,∠DCG=∠BCE
∴∠GCF=45°
在△GCF與△ECF中
∵GC=EC,∠GCF=∠ECF,CF=CF
∴△GCF≌△ECF(SAS)
∴GF=EF
∵CE=,CB=6
∴BE===3
∴AE=3,設(shè)AF=x,則DF=6﹣x,GF=3+(6﹣x)=9﹣x
∴EF==
∴
∴x=4,即AF=4
∴GF=5
∴DF=2
∴CF===
故選A.
【點(diǎn)撥】本題考查1.全等三角形的判定與性質(zhì);2.勾股定理;3.正方形的性質(zhì),作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.
5.C
【分析】
根據(jù)菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過(guò)折疊的性質(zhì),結(jié)合直角三角形勾股定理求得BC的長(zhǎng),則利用菱形的面積公式即可求解.
【詳解】
解:∵四邊形AECF是菱形,AB=3,
∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,
∵四邊形AECF是菱形,
∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,
2BE=CE,
∴CE=2x,
∴2x=3﹣x,
解得:x=1,
∴CE=2,利用勾股定理得出:
BC2+BE2=EC2,
BC===,
又∵AE=AB﹣BE=3﹣1=2,
則菱形的面積是:AEBC=2.
故選C.
【點(diǎn)撥】本題考查折疊問(wèn)題以及勾股定理.解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
6.D
【分析】
過(guò)P作PG⊥AB于點(diǎn)G,根據(jù)正方形對(duì)角線的性質(zhì)及題中的已知條件,證明△AGP≌△FPE后即可證明①AP=EF;④∠PFE=∠BAP;在此基礎(chǔ)上,根據(jù)正方形的對(duì)角線平分對(duì)角的性質(zhì),在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=EC,得出⑤正確,即可得出結(jié)論.
【詳解】
過(guò)P作PG⊥AB于點(diǎn)G,如圖所示:
∵點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理:PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,F(xiàn)P=GF-GP=AB-GB,
∴AG=PF,
在△AGP和△FPE中,
,
∴△AGP≌△FPE(SAS),
∴AP=EF,①正確,∠PFE=∠GAP,
∴∠PFE=∠BAP,④正確;
延長(zhǎng)AP到EF上于一點(diǎn)H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,
∴AP⊥EF,②正確,
∵點(diǎn)P是正方形ABCD的對(duì)角線BD上任意一點(diǎn),∠ADP=45°,
∴當(dāng)∠PAD=45°或67.5°時(shí),△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③正確.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=EC,
即PD=EC,⑤正確.
∴其中正確結(jié)論的序號(hào)是①②③④⑤,共有5個(gè).
故選D.
【點(diǎn)撥】本題考查了正方形的性質(zhì),全等三角形的判定及性質(zhì),垂直的判定,等腰三角形的性質(zhì),勾股定理的運(yùn)用.本題難度較大,綜合性較強(qiáng),在解答時(shí)要認(rèn)真審題.
7.C
【解析】
【分析】
過(guò)O作OE⊥CD于E.根據(jù)菱形的對(duì)角線互相垂直平分得出OB,OC的長(zhǎng),AC⊥BD,再利用勾股定理列式求出CD,然后根據(jù)三角形的面積公式求出OE.在Rt△OED中,利用勾股定理求出ED.根據(jù)等腰三角形三線合一的性質(zhì)得出PE ,利用CP=CD-PD即可得出結(jié)論.
【詳解】
過(guò)O作OE⊥CD于E.
∵菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,∴OBBD6=3,OA=OCAC8=4,AC⊥BD,由勾股定理得:CD5.
∵OC×OD=CD×OE,∴12=5OE,∴OE=2.4.在Rt△ODE中,DE===1.8.
∵OD=OP,∴PE=ED=1.8,∴CP=CD-PD=5-1.8-1.8=1.4=.
故選C.
【點(diǎn)撥】本題考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理,求出OE的長(zhǎng)是解題的關(guān)鍵.
8.B
【分析】
根據(jù)點(diǎn)E是AD的中點(diǎn)以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進(jìn)行計(jì)算即可得解.
【詳解】
解:∵E是AD的中點(diǎn),
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
連接EF,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設(shè)DF=x,則BF=3+x,CF=3-x,
在Rt△BCF中,BC2+CF2=BF2,即(2)2+(3-x)2=(3+x)2,
解得:x=2,
即DF=2;
故選B.
【點(diǎn)撥】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,翻折變換的性質(zhì);熟記矩形的性質(zhì)和翻折變換的性質(zhì),根據(jù)勾股定理列出方程是解題的關(guān)鍵.
9.D
【分析】
延長(zhǎng)、交于點(diǎn)G,根據(jù)三線合一性質(zhì)推出是等腰三角形,從而可得D是的中點(diǎn),E是的中點(diǎn),再利用中位線定理即可得.
【詳解】
如圖,延長(zhǎng)、交于點(diǎn)G
∵平分,于點(diǎn)D
∴
,D是的中點(diǎn)
∵
E是的中點(diǎn),F(xiàn)是的中點(diǎn),是的中位線,是的中位線
∴
又∵
∴
∴
∴
∴
故選:D.
【點(diǎn)撥】本題考查了等腰三角形的判定定理與性質(zhì)、中位線定理,通過(guò)作輔助線,構(gòu)造等腰三角形是解題關(guān)鍵.錯(cuò)因分析:容易題.失分原因是對(duì)特殊三角形的性質(zhì)及三角形的重要線段掌握不到位.
10.C
【分析】
①先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB,利用全等三角形的性質(zhì)解答即可;
②先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB;
③過(guò)點(diǎn)F作FP∥AE于P點(diǎn),根據(jù)題意有FP:AE=DF:DA=1:3,則FP:BE=1:6=FG:BG,即BG=6GF;
④因?yàn)辄c(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí),CG⊥BD;
⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°
【詳解】
解:①∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,∴△AED≌△DFB,∴∠ADE=∠DBF,故本選項(xiàng)正確;
②∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)錯(cuò)誤;
③過(guò)點(diǎn)F作FP∥AE交DE于P點(diǎn)(如圖2).
∵AF=2FD,∴FP:AE=DF:DA=1:3.
∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:2AE=1:6.
∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本選項(xiàng)正確;
④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形.
∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG.在△GDC與△BGC中,∵,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;
綜上所述:正確的結(jié)論有①③⑤,共3個(gè).
故選C.
【點(diǎn)撥】本題綜合考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定和性質(zhì),作出輔助線構(gòu)造出全等三角形,把不規(guī)則圖形的面轉(zhuǎn)化為兩個(gè)全等三角形的面積是解題的關(guān)鍵.
11.或
【分析】
先根據(jù)題目中描述畫(huà)出兩種可能的圖形,再結(jié)合勾股定理即可得解.
【詳解】
解:由題干描述可作出兩種可能的圖形.
①M(fèi)N交DC的延長(zhǎng)線于點(diǎn)F,如下圖所示
∵高AE等于邊長(zhǎng)的一半
∴
在Rt△ADE中,
又∵沿MN折疊后,A與B重合
∴
∴
②MN交DC的延長(zhǎng)線于點(diǎn)F,如下圖所示
同理可得,,
此時(shí),
故答案為:或.
【點(diǎn)撥】本題主要考查菱形的性質(zhì)、折疊的性質(zhì)、勾股定理等相關(guān)知識(shí)點(diǎn),根據(jù)題意作出兩種圖形是解題關(guān)鍵.
12.
【分析】
如下圖所示,△ENC、△MPF為等腰直角三角形,先求出MB=NC=,證明△PBC≌△PEC,進(jìn)而得到EP=BP,設(shè)MP=x,則EP=BP=,解出x,最后陰影部分面積等于2倍△BPC面積即可求解.
【詳解】
解:過(guò)E點(diǎn)作MN∥BC交AB、CD于M、N點(diǎn),設(shè)AB與EF交于點(diǎn)P點(diǎn),連接CP,如下圖所示,
∵B在對(duì)角線CF上,∴∠DCE=∠ECF=45°,EC=1,
∴△ENC為等腰直角三角形,
∴MB=CN=EC=,
又BC=AD=CD=CE,且CP=CP,△PEC和△PBC均為直角三角形,
∴△PEC≌△PBC(HL),
∴PB=PE,
又∠PFB=45°,∴∠FPB=45°=∠MPE,
∴△MPE為等腰直角三角形,
設(shè)MP=x,則EP=BP=,
∵M(jìn)P+BP=MB,
∴,解得,
∴BP=,
∴陰影部分的面積=.
故答案為:.
【點(diǎn)撥】本題考查了正方形的性質(zhì)及旋轉(zhuǎn)的性質(zhì),本題關(guān)鍵是能想到過(guò)E點(diǎn)作BC的平行線,再證明△ENC、△MPF為等腰直角三角形進(jìn)而求解線段長(zhǎng).
13. 或
【分析】
根據(jù),則在的中垂線上,作的中垂線交于 交于,所以:如圖的都符合題意,先證明四邊形是菱形,再利用菱形的性質(zhì)與勾股定理可得答案.
【詳解】
解: ,
在的中垂線上,
作的中垂線交于 交于,
所以:如圖的都符合題意,
矩形
四邊形是菱形,
,, ,
設(shè) 則
的長(zhǎng)為: 或
故答案為: 或
【點(diǎn)撥】本題考查的是矩形的性質(zhì),菱形的判定與性質(zhì),勾股定理的應(yīng)用,線段的垂直平分線的性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.
14.或4
【詳解】
分析:當(dāng)△A′EF為直角三角形時(shí),存在兩種情況:
①當(dāng)∠A'EF=90°時(shí),如圖1,根據(jù)對(duì)稱的性質(zhì)和平行線可得:A'C=A'E=4,根據(jù)直角三角形斜邊中線的性質(zhì)得:BC=2A'B=8,最后利用勾股定理可得AB的長(zhǎng);
②當(dāng)∠A'FE=90°時(shí),如圖2,證明△ABC是等腰直角三角形,可得AB=AC=4.
詳解:當(dāng)△A′EF為直角三角形時(shí),存在兩種情況:
①當(dāng)∠A'EF=90°時(shí),如圖1,
.
∵△A′BC與△ABC關(guān)于BC所在直線對(duì)稱,
∴A'C=AC=4,∠ACB=∠A'CB,
∵點(diǎn)D,E分別為AC,BC的中點(diǎn),
∴D、E是△ABC的中位線,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜邊BC的中點(diǎn),
∴BC=2A'E=8,
由勾股定理得:AB2=BC2-AC2,
∴AB=;
②當(dāng)∠A'FE=90°時(shí),如圖2,
.
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC與△ABC關(guān)于BC所在直線對(duì)稱,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;.
綜上所述,AB的長(zhǎng)為4或4;
故答案為4或4.
點(diǎn)睛:本題考查了三角形的中位線定理、勾股定理、軸對(duì)稱的性質(zhì)、等腰直角三角形的判定、直角三角形斜邊中線的性質(zhì),并利用分類討論的思想解決問(wèn)題.
15.4
【詳解】
分析:首先由S△PAB=S矩形ABCD,得出動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
詳解:設(shè)△ABP中AB邊上的高是h.
∵S△PAB=S矩形ABCD,
∴AB?h=AB?AD,
∴h=AD=2,
∴動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值為4.
故答案為4.
點(diǎn)睛:本題考查了軸對(duì)稱-最短路線問(wèn)題,三角形的面積,矩形的性質(zhì),勾股定理,兩點(diǎn)之間線段最短的性質(zhì).得出動(dòng)點(diǎn)P所在的位置是解題的關(guān)鍵.
16.2, ,
【分析】
根據(jù)題意分情況畫(huà)出符合題意的圖形,然后針對(duì)每一個(gè)圖形進(jìn)行求解即可得.
【詳解】
∵四邊形ABCD是正方形,
∴AD=AB=6,∠BAD=90°,∠DAC=45°,AC=BD=6;
如圖1,當(dāng)點(diǎn)P在AD上時(shí),∵AP+PD=AD=6,PD=2AP,∴AP=2;
如圖2,當(dāng)點(diǎn)P在AB上時(shí), ∵∠PAD=90°,∴AP2+AD2=AP2,
∵AD=6,PD=2AP,∴AP2+36=4AP2,∴AP=;
如圖3,當(dāng)點(diǎn)P在AC上時(shí),作PN⊥AD于點(diǎn)N,設(shè)AN=x,則有DN=6-x,PN=x,
由勾股定理則有AP=x,PD=,
∵PD=2AP,
∴=2x,
∴x=或x=(不符合題意,舍去),
∴AP=x=,
當(dāng)點(diǎn)P在其余邊可對(duì)角線上時(shí),不存在可以使PD=2AP的點(diǎn),
綜上,AP的長(zhǎng)為2, ,,
故答案為2, ,.
【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理的應(yīng)用等,難度較大,解題的關(guān)鍵是正確畫(huà)出符合題意的圖形.
17.2 +2
【分析】
將BC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得FC,作直線FE交OM于H,則∠BCF=90°,BC=FC,證△BCP≌△FCE(SAS),得∠BHF=90°,故點(diǎn)E在直線FH上,即點(diǎn)E的軌跡為直線FH,當(dāng)點(diǎn)E與點(diǎn)H重合時(shí),BE=BH最短,根據(jù)直角三角形性質(zhì)得CP,正方形CPHE中,PH=CP=2,BH=BH+PH.
【詳解】
如圖所示,
將BC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得FC,作直線FE交OM于H,則∠BCF=90°,BC=FC,
∵將CP繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,
∴∠PCE=90°,PC=EC,
∴∠BCP=∠FCE,
在△BCP和△FCE中,
BC=FC,∠BCP=∠FCE,PC=EC,
∴△BCP≌△FCE(SAS),
∴∠CBP=∠CFE,
又∵∠BCF=90°,
∴∠BHF=90°,
∴點(diǎn)E在直線FH上,即點(diǎn)E的軌跡為直線FH,
∵BH⊥EF,
∴當(dāng)點(diǎn)E與點(diǎn)H重合時(shí),BE=BH最短,
∵當(dāng)CP⊥OM時(shí),Rt△BCP中,∠CBP=30°,
∴CP=BC=2,BP=CP=2,
又∵∠PCE=∠CPH=∠PHE=90°,CP=CE,
∴正方形CPHE中,PH=CP=2,
∴BH=BH+PH=2+2,
即BE的最小值為2+2,
故答案為2+2.
【點(diǎn)撥】本題主要考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及垂線段最短的綜合運(yùn)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造全等三角形,根據(jù)全等三角形的對(duì)應(yīng)邊相等以及垂線段最短進(jìn)行判斷.
18.(-10,3)
【詳解】
試題分析:根據(jù)題意可知△CEF∽△OFA,可根據(jù)相似三角形的性質(zhì)對(duì)應(yīng)邊成比例,可求得OF=2CE,設(shè)CE=x,則BE=8-x,然后根據(jù)折疊的性質(zhì),可得EF=8-x,根據(jù)勾股定理可得,解得x=3,則OF=6,所以O(shè)C=10,由此可得點(diǎn)E的坐標(biāo)為(-10,3).
故答案為:(-10,3)
19.2
【詳解】
∵四邊形ABCD是平行四邊形,
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E為BC中點(diǎn),
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=,
∵AB∥CD,
∴∠B=∠ECH,
在△BFE和△CHE中,
∴△BFE≌△CHE(ASA),
∴EF=EH=,CH=BF=1,
∵S△DHF=DHFH=4,
∴S△DEF=S△DHF=2.
故答案為2.
20.①②③
【詳解】
【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,進(jìn)而得出DM=HM;依據(jù)當(dāng)∠DHC=60°時(shí),∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依據(jù)點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.
【詳解】由題可得,AM=BE,
∴AB=EM=AD,
∵四邊形ABCD是正方形,EH⊥AC,
∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=HM,故②正確;
當(dāng)∠DHC=60°時(shí),∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正確;
∵點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故③正確,
故答案為①②③.
【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的判定與性質(zhì)的綜合運(yùn)用,掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.
21.4或4.
【分析】
①當(dāng)AF<AD時(shí),由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過(guò)E作EH⊥MN于H,由矩形的性質(zhì)得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結(jié)論;②當(dāng)AF>AD時(shí),由折疊的性質(zhì)得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過(guò)A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質(zhì)得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結(jié)論.
【詳解】
①當(dāng)AF<AD時(shí),如圖1,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,
則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
設(shè)MN是BC的垂直平分線,
則AM=AD=3,
過(guò)E作EH⊥MN于H,
則四邊形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵M(jìn)F2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②當(dāng)AF>AD時(shí),如圖2,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上,
則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
設(shè)MN是BC的垂直平分線,
過(guò)A′作HG∥BC交AB于G,交CD于H,
則四邊形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
綜上所述,折痕EF的長(zhǎng)為4或4,
故答案為4或4.
【點(diǎn)撥】本題考查了翻折變換-折疊問(wèn)題,矩形的性質(zhì)和判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.
22.①③⑤
【分析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;?
②過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;?
③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;?
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;?
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.
【詳解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,?
∴∠EAB=∠PAD,?
又∵AE=AP,AB=AD,?
∵在△APD和△AEB中,?
,?
∴△APD≌△AEB(SAS);?
故此選項(xiàng)成立;?
③∵△APD≌△AEB,?
∴∠APD=∠AEB,?
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,?
∴∠BEP=∠PAE=90°,?
∴EB⊥ED;?
故此選項(xiàng)成立;?
②過(guò)B作BF⊥AE,交AE的延長(zhǎng)線于F,?
∵AE=AP,∠EAP=90°,?
∴∠AEP=∠APE=45°,?
又∵③中EB⊥ED,BF⊥AF,?
∴∠FEB=∠FBE=45°,?
又∵BE=?=?=?,?
∴BF=EF=?,?
故此選項(xiàng)不正確;?
④如圖,連接BD,在Rt△AEP中,
?
∵AE=AP=1,?
∴EP=?,?
又∵PB=?,?
∴BE=?,?
∵△APD≌△AEB,?
∴PD=BE=?,?
∴S?△ABP+S?△ADP=S?△ABD-S?△BDP=?S?正方形ABCD-?×DP×BE=?×(4+?)-?×?×?=?+?.?
故此選項(xiàng)不正確.?
⑤∵EF=BF=?,AE=1,?
∴在Rt△ABF中,AB?2=(AE+EF)?2+BF?2=4+?,?
∴S?正方形ABCD=AB?2=4+?,?
故此選項(xiàng)正確.?
故答案為①③⑤.
【點(diǎn)撥】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識(shí).
23..
【分析】
如圖所示,點(diǎn)B'在以E為圓心EA為半徑的圓上運(yùn)動(dòng),當(dāng)D、B'、E共線時(shí),B'D的值最小,根據(jù)勾股定理求出DE,根據(jù)折疊的性質(zhì)可知B'E=BE=2,即可求出B'D.
【詳解】
如圖所示點(diǎn)B'在以E為圓心EA為半徑的圓上運(yùn)動(dòng),當(dāng)D、B'、E共線時(shí),B'D的值最小,根據(jù)折疊的性質(zhì),△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.
∵E是AB邊的中點(diǎn),AB=4,∴AE=EB'=2.
∵AD=6,∴DE2,∴B'D=22.
故答案為22.
【點(diǎn)撥】本題考查了折疊的性質(zhì)、全等三角形的判定與性質(zhì)、兩點(diǎn)之間線段最短的綜合運(yùn)用;確定點(diǎn)B'在何位置時(shí),B'D的值最小是解決問(wèn)題的關(guān)鍵.
24.
【分析】
作G′R⊥BC于R,則四邊形RCIG′是正方形.首先證明點(diǎn)F′在線段BC上,再證明CH=HE′即可解決問(wèn)題.
【詳解】
作G′R⊥BC于R,則四邊形RCIG′是正方形.
∵∠DG′F′=∠IG′R=90°,
∴∠DG′I=∠RG′F′,
在△G′ID和△G′RF中
,
∴△G′ID≌△G′RF,
∴∠G′ID=∠G′RF′=90°,
∴點(diǎn)F′在線段BC上,
在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,
∴E′H=E′F′=1,F(xiàn)′H=,
易證△RG′F′≌△HF′E′,
∴RF′=E′H,RG′=RC=F′H,
∴CH=RF′=E′H,
∴CE′=,
∵RG′=HF′=,
∴CG′=RG′=,
∴CE′+CG′=+.
故答案為+.
【點(diǎn)撥】本題考查旋轉(zhuǎn)變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題.
25.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【詳解】
分析:(1)證明AB=DE,F(xiàn)B=AD,∠ABF=∠ADE即可解決問(wèn)題;
(2)只要證明FB⊥AD即可解決問(wèn)題.
詳(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,∠ABC=∠ADC,
∵BC=BF,CD=DE,
∴BF=AD,AB=DE,
∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,
∴∠ADE=∠ABF,
在△ABF與△EDA中,
∵AB=DE,∠ABF=∠ADE,BF=AD
∴△ABF≌△EDA.
(2)證明:延長(zhǎng)FB交AD于H.
∵AE⊥AF,
∴∠EAF=90°,
∵△ABF≌△EDA,
∴∠EAD=∠AFB,
∵∠EAD+∠FAH=90°,
∴∠FAH+∠AFB=90°,
∴∠AHF=90°,即FB⊥AD,
∵AD∥BC,
∴FB⊥BC.
點(diǎn)睛:本題考查平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形全等的條件,學(xué)會(huì)添加常用輔助線,屬于中考常考題型.
26.(1)BP=CE; CE⊥AD;(2)成立,理由見(jiàn)解析;(3) .
【詳解】
【分析】(1)①連接AC,證明△ABP≌△ACE,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可證得BP=CE;②根據(jù)菱形對(duì)角線平分對(duì)角可得,再根據(jù)△ABP≌△ACE,可得,繼而可推導(dǎo)得出 ,即可證得CE⊥AD;
(2)(1)中的結(jié)論:BP=CE,CE⊥AD 仍然成立,利用(1)的方法進(jìn)行證明即可;
(3)連接AC交BD于點(diǎn)O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的長(zhǎng),AP長(zhǎng),由△APE是等邊三角形,求得, 的長(zhǎng),再根據(jù),進(jìn)行計(jì)算即可得.
【詳解】(1)①BP=CE,理由如下:
連接AC,
∵菱形ABCD,∠ABC=60°,
∴△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
∵△APE是等邊三角形,
∴AP=AE ,∠PAE=60° ,
∴∠BAP=∠CAE,
∴△ABP≌△ACE,∴BP=CE;
②CE⊥AD ,
∵菱形對(duì)角線平分對(duì)角,
∴,
∵△ABP≌△ACE,
∴,
∵,
∴,
∴,
∴ ,
∴CF⊥AD ,即CE⊥AD;
(2)(1)中的結(jié)論:BP=CE,CE⊥AD 仍然成立,理由如下:
連接AC,
∵菱形ABCD,∠ABC=60°,
∴△ABC和△ACD都是等邊三角形,
∴AB=AC,∠BAD=120° ,
∠BAP=120°+∠DAP,
∵△APE是等邊三角形,
∴AP=AE , ∠PAE=60° ,
∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
∴∠BAP=∠CAE,
∴△ABP≌△ACE,∴BP=CE,,
∴∠DCE=30° ,∵∠ADC=60°,
∴∠DCE+∠ADC=90° , ∴∠CHD=90° ,∴CE⊥AD,
∴(1)中的結(jié)論:BP=CE,CE⊥AD 仍然成立;
(3) 連接AC交BD于點(diǎn)O,CE,作EH⊥AP于H,
∵四邊形ABCD是菱形,
∴AC⊥BD,BD平分∠ABC ,
∵∠ABC=60°,,
∴∠ABO=30° ,∴ , BO=DO=3,
∴BD=6,
由(2)知CE⊥AD,
∵AD∥BC,∴CE⊥BC,
∵ , ,
∴,
由(2)知BP=CE=8,∴DP=2,∴OP=5,
∴,
∵△APE是等邊三角形,∴ , ,
∵,
∴,
=
=
=,
∴四邊形ADPE的面積是 .
【點(diǎn)睛】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形判定與性質(zhì)等,熟練掌握相關(guān)知識(shí),正確添加輔助線是解題的關(guān)鍵.
27.(1)證明見(jiàn)解析(2)90°(3)AP=CE
【分析】
(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP ≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.
【詳解】
(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(對(duì)頂角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠DCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(對(duì)頂角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等邊三角形,∴PC=CE,∴AP=CE
考點(diǎn):三角形全等的證明
28.(1)CF⊥BD,BC=CF+CD;(2)成立,證明詳見(jiàn)解析;(3).
【詳解】
試題分析:(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論(3)根據(jù)等腰直角三角形的性質(zhì)得到BC=AB=4,AH=BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.
試題解析:解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中,,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
(2)成立,
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中,,
∴△DAB≌△FAC,
∴∠B=∠ACF,CF=BD
∴∠ACB+∠ACF=90°,即CF⊥BD;
∵BC=BD+CD,
∴BC=CF+CD;
(3)解:過(guò)A作AH⊥BC于H,過(guò)E作EM⊥BD于M,EN⊥CF于N,
∵∠BAC=90°,AB=AC,
∴BC=AB=4,AH=BC=2,
∴CD=BC=1,CH=BC=2,
∴DH=3,
由(2)證得BC⊥CF,CF=BD=5,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH與△DEM中,,
∴△ADH≌△DEM,
∴EM=DH=3,DM=AH=2,
∴CN=EM=3,EN=CM=3,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
∴EG==.
考點(diǎn):四邊形綜合題.
這是一份專題1.11 數(shù)與式計(jì)算100題(培優(yōu)篇)(模擬與真題專練)-2022年中考數(shù)學(xué)基礎(chǔ)知識(shí)專項(xiàng)講練(全國(guó)通用),共69頁(yè)。試卷主要包含了0;,先化簡(jiǎn),再求值,填空,化簡(jiǎn)下列各式,計(jì)算,分解因式,已知,求代數(shù)式的值等內(nèi)容,歡迎下載使用。
這是一份專題 18.38 平行四邊形中考真題專練(鞏固篇)(專項(xiàng)練習(xí))-八年級(jí)數(shù)學(xué)下冊(cè)基礎(chǔ)知識(shí)專項(xiàng)講練(人教版),共29頁(yè)。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份專題 18.30 《平行四邊形》全章復(fù)習(xí)與鞏固(培優(yōu)篇)(模擬與真題專練)-八年級(jí)數(shù)學(xué)下冊(cè)基礎(chǔ)知識(shí)專項(xiàng)講練(人教版),共45頁(yè)。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。
專題 18.28 《平行四邊形》全章復(fù)習(xí)與鞏固(基礎(chǔ)篇)(真題專練)-八年級(jí)數(shù)學(xué)下冊(cè)基礎(chǔ)知識(shí)專項(xiàng)講練(人教版)
專題 18.29 《平行四邊形》全章復(fù)習(xí)與鞏固(鞏固篇)(真題專練)-八年級(jí)數(shù)學(xué)下冊(cè)基礎(chǔ)知識(shí)專項(xiàng)講練(人教版)
數(shù)學(xué)八年級(jí)下冊(cè)第十八章 平行四邊形綜合與測(cè)試當(dāng)堂檢測(cè)題
人教版八年級(jí)下冊(cè)第十八章 平行四邊形綜合與測(cè)試達(dá)標(biāo)測(cè)試
微信掃碼,快速注冊(cè)
注冊(cè)成功