
隨著高考改革的不斷推進(jìn),各地的模擬題呈現(xiàn)的考查方向百花齊放,以三角形為背景,其考查的知識(shí)內(nèi)容和范圍,涉及平面幾何、立體幾何、不等式、向量、新定義等學(xué)科分支,對(duì)綜合運(yùn)用各種知識(shí)技能解題的靈活性要求有所加強(qiáng),應(yīng)予以重視.
解三角形與其他知識(shí)的交匯
解三角形中的新定義、新情境問題
[蒙日?qǐng)A]在圓x2+y2=4上任取一點(diǎn)T,過點(diǎn)T作x軸的垂線段TD,垂足為D.當(dāng)點(diǎn)T在圓上運(yùn)動(dòng)時(shí),線段TD的中點(diǎn)Q的軌跡是橢圓C(當(dāng)點(diǎn)T經(jīng)過圓與x軸的交點(diǎn)時(shí),規(guī)定點(diǎn)Q與點(diǎn)T重合).(1)求該橢圓C的方程;
解三角形與立體幾何、解析幾何結(jié)合,利用正弦定理、余弦定理可以將幾何體中的長度、角度聯(lián)系在一起,可以考查幾何體中的線段長度或者幾何體中的角度之間的關(guān)系,或者構(gòu)造長度、角度的函數(shù)求最值問題.
(2024·重慶模擬)“費(fèi)馬問題”是由十七世紀(jì)法國數(shù)學(xué)家費(fèi)馬提出并征解的一個(gè)問題.該問題是:“在一個(gè)三角形內(nèi)求作一點(diǎn),使其與此三角形的三個(gè)頂點(diǎn)的距離之和最小.”意大利數(shù)學(xué)家托里拆利給出了解答,當(dāng)△ABC的三個(gè)內(nèi)角均小于120°時(shí),使得∠AOB=∠BOC=∠COA=120°的點(diǎn)O即為費(fèi)馬點(diǎn);當(dāng)△ABC有一個(gè)內(nèi)角大于或等于120°時(shí),最大內(nèi)角的頂點(diǎn)為費(fèi)馬點(diǎn).試用以上知識(shí)解決下面問題:已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且cs 2B+cs 2C-cs 2A=1.(1)求A;
(3)設(shè)點(diǎn)P為△ABC的費(fèi)馬點(diǎn),|PB|+|PC|=t|PA|,求實(shí)數(shù)t的最小值.
通過給出一個(gè)新概念,或約定一種新運(yùn)算,或給出幾個(gè)新模型來創(chuàng)設(shè)全新的問題情境,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識(shí)和方法,實(shí)現(xiàn)信息的遷移,達(dá)到靈活解題的目的.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點(diǎn),弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、運(yùn)算、驗(yàn)證,使問題得以解決.
(2024·宿遷模擬)法國著名軍事家拿破侖·波拿巴最早提出的一個(gè)幾何定理:“以任意三角形的三條邊為邊,向外構(gòu)造三個(gè)等邊三角形,則這三個(gè)三角形的外接圓圓心恰為另一個(gè)等邊三角形的頂點(diǎn).”如圖,在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccs A-acs B=bcs A.以AB,BC,AC為邊向外作三個(gè)等邊三角形,其外接圓圓心依次為O1,O2,O3,連接O1O2,O2O3,O1O3,得到△O1O2O3.?(1)求A;
(2)若M1,M2,M3,…,Mn-1是△ABC的邊BC的n(n≥2)等分點(diǎn),由A對(duì)BC施以視角運(yùn)算,證明:(B,C;Mk)×(B,C;Mn-k)=1(k=1,2,3,…,n-1).
這是一份專題二 微專題1 三角函數(shù)--2025年高考數(shù)學(xué)大二輪復(fù)習(xí)課件+講義+專練,文件包含專題二微專題1三角函數(shù)--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)課件pptx、專題二微專題1三角函數(shù)--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)強(qiáng)化練習(xí)docx、專題二微專題1三角函數(shù)--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)教師版docx、專題二微專題1三角函數(shù)--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)學(xué)生版docx等4份課件配套教學(xué)資源,其中PPT共60頁, 歡迎下載使用。
這是一份專題二 微重點(diǎn)2 平面向量數(shù)量積的最值與范圍問題--2025年高考數(shù)學(xué)大二輪復(fù)習(xí)課件+講義+專練,文件包含專題二微重點(diǎn)2平面向量數(shù)量積的最值與范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)課件pptx、專題二微重點(diǎn)2平面向量數(shù)量積的最值與范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)強(qiáng)化練習(xí)docx、專題二微重點(diǎn)2平面向量數(shù)量積的最值與范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)教師版docx、專題二微重點(diǎn)2平面向量數(shù)量積的最值與范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)學(xué)生版docx等4份課件配套教學(xué)資源,其中PPT共58頁, 歡迎下載使用。
這是一份專題二 微重點(diǎn)1 三角函數(shù)中ω,φ的范圍問題--2025年高考數(shù)學(xué)大二輪復(fù)習(xí)課件+講義+專練,文件包含專題二微重點(diǎn)1三角函數(shù)中ωφ的范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)課件pptx、專題二微重點(diǎn)1三角函數(shù)中ωφ的范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)強(qiáng)化練習(xí)docx、專題二微重點(diǎn)1三角函數(shù)中ωφ的范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)教師版docx、專題二微重點(diǎn)1三角函數(shù)中ωφ的范圍問題--2025年高考數(shù)學(xué)大二輪專題復(fù)習(xí)學(xué)生版docx等4份課件配套教學(xué)資源,其中PPT共60頁, 歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功