一、單選題(共8小題,每題5分,共40分)
1.已知集合,,則( )
A.B.C.D.
2.如圖,梯形ABCD的腰CD的中點為E,且,記,,則( )
A.B.C.D.
3.設(shè)等比數(shù)列的前項和為,,,則( )
A.1B.4C.8D.25
4.若兩個正實數(shù),滿足,且存在這樣的,使不等式有解,則實數(shù)的取值范圍是( )
A.B.C.或D.或
5.若A為函數(shù)圖象上的一點,,則的最小值為( )
A.B.C.D.2
6.鼎湖峰,矗立于浙江省縉云縣仙都風景名勝區(qū),狀如春筍拔地而起,其峰頂鑲嵌著一汪小湖.某校開展數(shù)學建模活動,有建模課題組的學生選擇測量鼎湖峰的高度,為此,他們設(shè)計了測量方案.如圖,在山腳測得山頂?shù)醚鼋菫椋貎A斜角為的斜坡向上走了90米到達點(,,,在同一個平面內(nèi)),在處測得山頂P得仰角為60°,則鼎湖峰的山高PQ為( )米.

A.B.C.D.
7.已知函數(shù),數(shù)列滿足,且數(shù)列是單調(diào)遞增數(shù)列,則的取值范圍是( )
A.B.C.D.
8.閱讀材料:數(shù)軸上,方程可以表示數(shù)軸上的點,平面直角坐標系中,方程(、不同時為0)可以表示坐標平面內(nèi)的直線,空間直角坐標系中,方程(、、不同時為0)可以表示坐標空間內(nèi)的平面.過點且一個法向量為的平面的方程可表示為.閱讀上面材料,解決下面問題:已知平面的方程為,直線是兩平面與的交線,則直線與平面所成角的正弦值為( )
A.B.C.D.
二、多選題(共3小題,每題6分,全部選對得6分,共18分。部分選對得部分分,錯選得0分)
9.下列有關(guān)復數(shù)的說法正確的是( )
A.若是關(guān)于的方程的一個根,則
B.若,則點的集合所構(gòu)成的圖形的面積為
C.若是復數(shù),則一定有
D.若,,則
10.如圖,在平行六面體中,已知,,為棱上一點,且,則( )
A.B.直線與所成角的余弦值為
C.平面D.直線與平面所成角為
11.(多選)已知函數(shù)的導函數(shù)的部分圖象如圖所示,其中點,分別為的圖象上的一個最低點和一個最高點,則( )
A.
B.圖象的對稱軸為直線
C.函數(shù)在上單調(diào)遞增
D.將的圖象向右平移個單位,再將縱坐標伸長為原來的2倍,即可得到的圖象
三、填空題(共3小題,每題5分,共15分)
12.在長方體中,若,,則直線到平面的距離是________.
13.已知平面向量,,,,則的最小值為________.
14.已知函數(shù)有兩個零點,,則的取值范圍為________.
四、解答題(共5小題,15題13分,16、17題15分,18、19題17分,共77分)
15.在中,角,,所對的邊分別為,,.已知.
(1)求;
(2)若,且的面積為,求的周長.
16.設(shè)數(shù)列的前項和為,已知,.數(shù)列是首項為,公差不為零的等差數(shù)列,且,,成等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)若,數(shù)列的前項和為,且恒成立,求的取值范圍.
17.已知函數(shù),.
(1)當時,求的單調(diào)區(qū)間和極值;
(2)若,,求的取值范圍.
18.如圖,正方形的邊長為2,,分別為,的中點在五棱錐中,為棱上一點,平面與棱,分別交于點,.
(1)求證:;
(2)若底面,且,直線與平面所成角為.
(i)確定點的位置,并說明理由;
(ii)求線段的長.
19.定義:任取數(shù)列中相鄰的兩項,若這兩項之差的絕對值為3,則稱數(shù)列具有“性質(zhì)3”.已知項數(shù)為的數(shù)列的所有項的和為,且數(shù)列具有“性質(zhì)3”.
(1)若,且,,寫出所有可能的的值;
(2)若,,證明:“”是“”的充要條件;
(3)若,,,證明:或,
期中考試數(shù)學參考答案:
4.C 【詳解】由題設(shè),則,當且僅當,即時等號成立,要使不等式有解,則,所以或.故選:C
5.【詳解】因為,所以在上單調(diào)遞增,且也單調(diào)遞增,若,則,顯然不符合題意;設(shè),則函數(shù)在點A處的切線的斜率為,所以取得最小值,令,則,令,則且,令,則,顯然在上單調(diào)遞增,又,,所以存在使得,即,所以當時,此時單調(diào)遞減,當時,此時單調(diào)遞增,所以在處取得極小值即最小值,
又,函數(shù)在上單調(diào)遞減,又,,當時,所以,所以恒成立,
即恒成立,所以在上單調(diào)遞增,又,所以,此時,所以取得最小值為.故選:B.
6.B 【詳解】由題知,,,則,,又,所以,所以,,在中,,根據(jù)正弦定理有,且,則,在中,.所以山高為米.故選:B.
7.A 【詳解】數(shù)列是單調(diào)遞增數(shù)列,可知當,時,單調(diào)遞增,即或,解得;當時,單調(diào)遞增恒成立,且,即;解得,所以若數(shù)列是單調(diào)遞增數(shù)列,則,故選:A.
8.A 【詳解】因為平面的方程為,所以平面的法向量可取,平面的法向量為,平面的法向量為,設(shè)兩平面的交線的方向向量為,由,令,則,所以兩平面的交線的方向向量為,設(shè)直線與平面所成角的大小為,則.故選:A.
9.ABD【詳解】A,由題意,整理得,所以,解得,故,正確;B,記,則,所以,圓的面積為,圓的面積為,所以點的集合所構(gòu)成的圖形的面積為,正確.C,當,則,而,顯然不成立,錯誤;D,令,,則,故,又,,則,所以,正確.故選:ABD
10.ABD 【詳解】不妨設(shè),,,則,.對于A,因,故,故,故A正確;對于B,因,,則,,設(shè)直線與所成角為,則,故B正確;對于C,因,,,即與不垂直,故不與平面垂直,故C錯誤;對于D,因,,,因,,則有,,因,,平面,故平面,即平面的法向量可取為,又,設(shè)直線與平面所成角為,因,,,則,因,故,故D正確.故選:ABD.
11.BCD 【詳解】,由圖象知,則,由五點對應法,,所以,,由于,所以,故,故A錯誤;由,得,,即圖象的對稱軸為直,,故B正確;,當,則,此時為增函數(shù),故C正確;將的圖象向右平移個單位長度,得,再將所有點的縱坐標伸長為原來的2倍,得到,此時可以得到的圖象,故D正確.故選:BCD.
12./6.72 【詳解】易知,又面,面,所以面,則直線到平面的距離,與點到平面的距離相等,
過作于,因為面,面,所以,又,,面,所以面,又,,則,在中,,得到,所以直線到平面的距離為,故答案為:.
13.4 【詳解】因為,,,則,當且僅當時,等號成立,所以的最小值為16,即的最小值為4.故答案為:4.
14. 【詳解】易知函數(shù)的定義域為,令,得到,令,,圖象如圖所示,因為函數(shù)有兩個零點,,由圖易知,,,且,得到,所以,令,則,又易知在區(qū)間上單調(diào)遞減,所以,即的取值范圍為,故答案為:.
15.(1);(2).
【詳解】(1)由題得,…………2分
因為,,…5分
故,故,所以.…………6分
(2)由(1)得,故由和得,…………9分
所以,故,…………12分
所以的周長為.…………13分
16.(1),;(2).
【詳解】(1),
當時,,兩式相減化簡可得:,
即數(shù)列是以3為公比的等比數(shù)列,…………2分
又,,解得,…………3分
即,…………4分
設(shè)數(shù)列的公差為,,…………5分
,,成等比數(shù)列,,
解得或(舍去),…………7分
即,
數(shù)列和的通項公式為,.…………8分
(2)由(1)得,…………9分
,,…………11分
兩式相減得:
,…………13分
即有恒成立,恒成立,可得,即的范圍是.…………15分
17.(1)單調(diào)遞增區(qū)間為,遞減區(qū)間為;極大值為-1,無極小值;(2)
【詳解】(1)當時,,,…………1分
令,則,故在上單調(diào)遞減,而,因此0是在上的唯一零點,即0是在上的唯一零點,當變化時,,的變化情況如下表:
…………5分
所以的單調(diào)遞增區(qū)間為,遞減區(qū)間為;…………6分
所以的極大值為,無極小值;…………7分
(2)由題意知,即,即,…………8分
設(shè),則,…………10分
令,解得,…………11分
當,,單調(diào)遞增,
當,,單調(diào)遞減,…………13分
所以,所以.
所以的取值范圍為.…………15分
18.(1)證明見解析(2)(i)為中點;理由見解析(ii)2.
【詳解】(1)在正方形中,,又平面,平面,
所以平面,又平面,平面平面,
則;…………5分
(2)(i)當為中點時,有直線與平面所成角為,
證明如下:由平面,可得,,
建立空間直角坐標系,如圖所示:
則,,,,
又為中點,則,,,,…………7分
設(shè)平面的一個法向量為,
則有,即,令,則,
則平面的一個法向量為,…………9分
設(shè)直線與平面所成角為,
則,
故當為中點時,直線與平面所成角的大小為.…………11分
(ii)設(shè)點的坐標為,
因為點在棱上,所以可設(shè),
即,所以,,,…………13分
因為是平面的法向量,
所以,即,解得,…………15分
故,則,
所以.…………17分
19.(1)6;0;12(2)證明見解析(3)證明見解析
【詳解】(1)依題意可知有如下三種情況:
若:0,3,0,3,此時,
若:0,-3,0,3,此時,
若:0,3,6,3,此時.…………12分
(2)證明:
必要性:因為,
故數(shù)列為等差數(shù)列,
所以,公差為-3,
所以,必要性成立;…………6分
充分性:由于,
累加可得,,即,
因為,故上述不等式的每個等號都取到,
所以,,所以,,充分性成立;9分
綜上所述,“”是“,”的充要條件;
(3)證明:
令,依題意,,
因為,
所以
,…………12分
因為,所以為偶數(shù),
所以為偶數(shù);
所以要使,必須使為偶數(shù),即4整除,
亦即或,…………14分
當時,
比如,,,
或,,時,有,;
當時,
比如,,,,
或,,,,有,;
當或時,不能被4整除,.…………17分
題號
1
2
3
4
5
6
7
8
9
10
答案
A
A
A
C
B
B
A
A
ABD
ABD
題號
11
答案
BCD
0

0

單調(diào)遞增
極大值
單調(diào)遞減

相關(guān)試卷

湖南省部分學校2024-2025學年高三上學期一輪復習期中聯(lián)考考數(shù)學試卷(Word版附解析):

這是一份湖南省部分學校2024-2025學年高三上學期一輪復習期中聯(lián)考考數(shù)學試卷(Word版附解析),文件包含湖南省部分學校2025屆高三一輪復習中期聯(lián)考數(shù)學試題Word版含解析docx、湖南省部分學校2025屆高三一輪復習中期聯(lián)考數(shù)學試題Word版無答案docx等2份試卷配套教學資源,其中試卷共23頁, 歡迎下載使用。

河北省邯鄲市部分校2024-2025學年高三上學期第一次聯(lián)考數(shù)學試題(Word版附解析):

這是一份河北省邯鄲市部分校2024-2025學年高三上學期第一次聯(lián)考數(shù)學試題(Word版附解析),文件包含河北省邯鄲市部分學校2025屆高三上學期月考一數(shù)學試卷Word版含解析docx、河北省邯鄲市部分學校2025屆高三上學期月考一數(shù)學試卷Word版無答案docx等2份試卷配套教學資源,其中試卷共24頁, 歡迎下載使用。

河北省邯鄲市部分校2024-2025學年高三上學期第二次聯(lián)考數(shù)學試題(Word版附解析):

這是一份河北省邯鄲市部分校2024-2025學年高三上學期第二次聯(lián)考數(shù)學試題(Word版附解析),文件包含河北省邯鄲市部分校2024-2025學年高三上學期月考二數(shù)學試卷Word版含解析docx、河北省邯鄲市部分校2024-2025學年高三上學期月考二數(shù)學試卷Word版無答案docx等2份試卷配套教學資源,其中試卷共26頁, 歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

貴州省部分學校2024-2025學年高三上學期10月聯(lián)考數(shù)學試卷(Word版附解析)

貴州省部分學校2024-2025學年高三上學期10月聯(lián)考數(shù)學試卷(Word版附解析)

江西省部分學校2024-2025學年高三上學期10月聯(lián)考數(shù)學試卷(Word版附解析)

江西省部分學校2024-2025學年高三上學期10月聯(lián)考數(shù)學試卷(Word版附解析)

陜西省部分學校2024-2025學年高三上學期開學校際聯(lián)考數(shù)學試卷(Word版附答案)

陜西省部分學校2024-2025學年高三上學期開學校際聯(lián)考數(shù)學試卷(Word版附答案)

河北省部分學校2023-2024學年高三上學期期末質(zhì)量監(jiān)測聯(lián)考數(shù)學試卷(Word版附解析)

河北省部分學校2023-2024學年高三上學期期末質(zhì)量監(jiān)測聯(lián)考數(shù)學試卷(Word版附解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部