1.能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型,并能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理.2.能夠列一元二次方程解有關(guān)特殊圖形的實際問題.
(60+2x)(40+2x)=3 500.
假如有一幅畫長60 cm,寬40 cm,要給它四周裱上同樣寬度的木框,使它的總面積達(dá)到3 500 cm2,設(shè)木框?qū)挾葹閤 cm,你能列出等式嗎?
如圖,要設(shè)計一本書的封面,封面長為27 cm,寬為21 cm,正中央是一個與整個封面長寬比例相同的矩形.如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(結(jié)果保留小數(shù)點后一位)?
(1)根據(jù)題目的已知條件,可以推出中央的矩形的長寬之比也是27∶21=9∶7,那你知道上、下邊襯與左、右邊襯的寬度之比是多少嗎?請你推一推.
設(shè)中央的矩形的長和寬分別是9a cm和7a cm,由此得上、下邊襯與左、右邊襯的寬度之比是
(2)設(shè)上、下邊襯的寬均為9x cm,而不是設(shè)為x cm,這樣做有什么好處?
列出的方程為整數(shù)式,方便計算.
(3)解方程時課本上先把方程整理成了一般形式,然后再用公式法求解,你有更簡便解法嗎?
(4)方程的哪個根符合實際意義?為什么?
上、下邊襯的寬度之和會超過封面的長度,不符合實際情況.
(5)如果設(shè)中央矩形的長為9x,根據(jù)課本上的等量關(guān)系,請你列方程求解,你的解法是什么?
設(shè)中央矩形的長為9x cm.則寬為7x cm.
(6)練習(xí):要為一幅長29 cm,寬22 cm的照片配一個相框,要求相框的四條邊寬度相等,且相框所占面積為照片面積的四分之一,相框的寬度應(yīng)是多少厘米(結(jié)果保留小數(shù)點后一位)?
答:相框的寬度約為1.5 cm.
解:設(shè)道路的寬為x m.可列方程
例1 如圖,在一塊寬為20 m,長為32 m的矩形地面上修筑同樣寬的兩條道路,余下的部分種上草坪,要使草坪的面積為540 m2,則道路的寬為多少?
還有其他列方程的方法嗎?
整理,得x2-52x+100=0,
解得x1=2,x2=50.
當(dāng)x=50時,32-x=-18,不合題意,舍去.
答:道路的寬為2 m.
解:設(shè)道路的寬為x m.
可列方程(32-x)(20-x)=540,
我們利用“圖形經(jīng)過移動,它的面積大小不會改變”的性質(zhì),把縱、橫兩條路移動一下,使列方程容易些(目的是求出水渠的寬,至于實際施工,仍可按原圖的位置修路).
例2 如圖,要利用一面墻(墻足夠長)建羊圈,用58 m的圍欄圍成面積為200 m2的矩形羊圈,則羊圈的邊長AB和BC各是多少米?
解:設(shè)AB長是x m.
則(58-2x)x=200,
即x2-29x+100=0.
解得x1=25,x2=4.
當(dāng)x=25時,58-2x=8;
當(dāng)x=4時,58-2x=50.
答:羊圈的邊長AB和BC各是25 m,8 m或4 m,50 m.
圍墻問題一般先設(shè)其中的一條邊為x,然后用x表示另一邊,最后根據(jù)面積或周長公式列方程求解.需要注意聯(lián)系實際問題選擇合適的解.
1.在一幅長80 cm,寬50 cm的長方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖所示,如果要使整個掛圖的面積是5 400 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是( ?。〢.x2+130x-1 400=0B.x2+65x-350=0C.x2-130x-1 400=0D.x2-65x-350=0
2.一塊矩形鐵板,長是寬的2倍,如果在4個角上截去邊長為5 cm的小正方形,然后把四邊折起來,做成一個沒有蓋的盒子,盒子的容積是3 000 cm3,求鐵板的長和寬.
解:設(shè)鐵板的寬為x cm,則長為2x cm.
列方程,得5(2x-10)(x-10)=3 000,整理,得x2-15x-250=0.解得x1=25,x2=-10(舍去),∴2x=50.
答:鐵板的長為50 cm,寬為25 cm.
3.如圖,在Rt△ABC中,∠C=90°,AC=6 cm,BC=8 cm.點P沿AC邊從點A向終點C以1 cm/s的速度移動;同時點Q沿CB邊從點C向終點B以2 cm/s的速度移動,且當(dāng)其中一點到達(dá)終點時,另一點也隨之停止移動.問點P,Q出發(fā)幾秒后可使△PCQ的面積為9 cm2?
根據(jù)題意得AP=x cm,PC=(6-x)cm,CQ=2x cm.
解:設(shè)點P,Q出發(fā)x s后△PCQ的面積為9 cm2.
解得x1=x2=3.經(jīng)檢驗,符合題意.
答:點P,Q出發(fā)3 s后可使△PCQ的面積為9 cm2.

相關(guān)課件

初中人教版21.3 實際問題與一元二次方程獲獎?wù)n件ppt:

這是一份初中人教版21.3 實際問題與一元二次方程獲獎?wù)n件ppt,文件包含人教版初中數(shù)學(xué)九年級上冊2133實際問題與一元二次方程課件PPTpptx、人教版初中數(shù)學(xué)九年級上冊2133實際問題與一元二次方程教案docx、人教版初中數(shù)學(xué)九年級上冊2133實際問題與一元二次方程分層練習(xí)docx、人教版初中數(shù)學(xué)九年級上冊2133實際問題與一元二次方程預(yù)習(xí)案docx等4份課件配套教學(xué)資源,其中PPT共27頁, 歡迎下載使用。

人教版21.3 實際問題與一元二次方程優(yōu)秀課件ppt:

這是一份人教版21.3 實際問題與一元二次方程優(yōu)秀課件ppt,共43頁。

數(shù)學(xué)九年級上冊21.3 實際問題與一元二次方程精品教學(xué)作業(yè)課件ppt:

這是一份數(shù)學(xué)九年級上冊21.3 實際問題與一元二次方程精品教學(xué)作業(yè)課件ppt,文件包含213實際問題與一元二次方程利潤問題表格問題和動點問題教學(xué)課件pptx、213實際問題與一元二次方程利潤問題表格問題和動點問題分層作業(yè)解析版docx、213實際問題與一元二次方程利潤問題表格問題和動點問題分層作業(yè)原卷版docx、213實際問題與一元二次方程利潤問題表格問題和動點問題導(dǎo)學(xué)案原卷版docx、213實際問題與一元二次方程利潤問題表格問題和動點問題導(dǎo)學(xué)案解析版docx、213實際問題與一元二次方程利潤問題表格問題和動點問題教學(xué)設(shè)計docx等6份課件配套教學(xué)資源,其中PPT共22頁, 歡迎下載使用。

英語朗讀寶

相關(guān)課件 更多

2020-2021學(xué)年22.3 實際問題與二次函數(shù)教案配套ppt課件

2020-2021學(xué)年22.3 實際問題與二次函數(shù)教案配套ppt課件

2021學(xué)年21.3 實際問題與一元二次方程教學(xué)課件ppt

2021學(xué)年21.3 實際問題與一元二次方程教學(xué)課件ppt

人教版九年級上冊21.3 實際問題與一元二次方程多媒體教學(xué)ppt課件

人教版九年級上冊21.3 實際問題與一元二次方程多媒體教學(xué)ppt課件

數(shù)學(xué)人教版21.3 實際問題與一元二次方程獲獎?wù)n件ppt

數(shù)學(xué)人教版21.3 實際問題與一元二次方程獲獎?wù)n件ppt

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
初中數(shù)學(xué)人教版九年級上冊電子課本

21.3 實際問題與一元二次方程

版本: 人教版

年級: 九年級上冊

切換課文
  • 課件
  • 教案
  • 試卷
  • 學(xué)案
  • 更多
所有DOC左下方推薦
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部