專題突破練8 三角函數(shù)的圖象與性質(zhì)一、單項選擇題1.(2021·山東青島一模)已知角θ終邊上有一點P,cos θ的值為(  )A. B.- C.- D.2.(2021·新高考,4)下列區(qū)間中,函數(shù)f(x)=7sinx-單調(diào)遞增的區(qū)間是(  )A. B. C. D.3.(2021·山西臨汾一模)已知θ=,則下列各數(shù)中最大的是(  )A.sin(sin θ) B.sin(cos θ) C.cos(sin θ) D.cos(cos θ)4.(2021·浙江金華期中)已知函數(shù)f(x)=sin(ωx+φ)(ω0)的圖象經(jīng)過點,一條對稱軸方程為x=,則函數(shù)f(x)的周期可以是(  )A. B. C. D.5.(2021·廣東廣州月考)將函數(shù)f(x)=sin(2x+θ)的圖象向右平移φ(φ>1)個單位長度后得到函數(shù)g(x)的圖象,f(x),g(x)的圖象都經(jīng)過點P,φ的值可以是(  )A. B. C. D.6.(2021·山東日照期末)已知函數(shù)f(x)=sinωx+(ω>0)在區(qū)間[0,2π]上有且僅有6個零點,則實數(shù)ω的取值范圍為(  )A. B. C. D.7.(2021·江西臨川期末)函數(shù)f(x)=x-·cos的大致圖象可能為(  )8.(2021·湖北荊門模擬)已知函數(shù)f(x)=asin 2x-bsin2x(a>0,b>0),f=f,則下列結(jié)論正確的是(  )A.f(0)<f<f(1)B.f(0)<f(1)<fC.f<f(1)<f(0)D.f(1)<f<f(0)二、多項選擇題9.(2021·山西太原月考)已知函數(shù)f(x)=2(2|cos x|+cos x)sin x,則下列結(jié)論錯誤的是(  )A.x,f(x)[0,3]B.函數(shù)f(x)的最小正周期為πC.函數(shù)f(x)在區(qū)間上單調(diào)遞減D.函數(shù)f(x)的對稱中心為(2kπ,0)(kZ)10.(2021·遼寧錦州模擬)已知ω>,函數(shù)f(x)=sin在區(qū)間(π,2π)上沒有最值,則下列結(jié)論正確的是(  )A.f(x)在區(qū)間(π,2π)上單調(diào)遞增B.ωC.f(x)在區(qū)間[0,π]上沒有零點D.f(x)在區(qū)間[0,π]上只有一個零點三、填空題11.(2021·四川綿陽期中)已知角α(0°α<360°)終邊上一點的坐標為(sin 215°,cos 215°),α=.12.(2021·海南海口中學期末)已知函數(shù)f(x)=sin(ω>0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,ω=     . 13.(2021·河北石家莊期中)已知函數(shù)f(x)=sin(ωx+φ)滿足f(x+π)=f(x),f=1,f的值等于.14.(2021·浙江金華月考)已知函數(shù)f(x)=sin 4x-2cos 4x,若對任意的xR都有f(x)f(x0),f. 
專題突破練8 三角函數(shù)的圖象與性質(zhì)1.D 解析: 因為tan=tan=tan,sin=sin=sin=-sinπ-=-sin=-,所以2sin=-1,所以P(,-1).所以cos θ=.2.A 解析: x-,kZ,x,kZ.k=0,得函數(shù)f(x)=7sin的單調(diào)遞增區(qū)間為,,是函數(shù)f(x)的一個單調(diào)遞增區(qū)間.故選A.3.D 解析: θ=,sin θ=,cos θ=,sin(sin θ)=sin=cos,sin(cos θ)=sin=cos,cos(sin θ)=cos,cos(cos θ)=cos,0<<π,且函數(shù)y=cos x在區(qū)間(0,π)上單調(diào)遞減,cos>cos>cos>cos,最大的是cos,即最大的是cos(cos θ).4.B 解析: 由題意得T(kZ),T=(kZ).結(jié)合四個選項可知,只有選項B符合.5.B 解析: 依題意g(x)=sin[2(x-φ)+θ]=sin(2x+θ-2φ),因為f(x),g(x)的圖象都經(jīng)過點P,所以因為-<θ<,所以θ=,θ-2φ=+2kπθ-2φ=+2kπ(kZ),φ=-kπφ=-kπ-(kZ).結(jié)合四個選項可知,只有選項B符合.6.C 解析: f(x)=0,ωx+=kπ(kZ),x=-(kZ),ω>0,可知在區(qū)間[0,2π],從左到右f(x)的第1個零點為x1=-,而第6個零點為x6=-,7個零點為x7=-,2π<,解得ω<.7.A 解析: 函數(shù)f(x)=cos的定義域為{x|x0},f(-x)=cos=-cos=-f(x),所以函數(shù)f(x)為奇函數(shù),排除B,C選項;0<x<1,x-<0,0<,cos>0,所以f(x)<0,排除D選項.8.B 解析: 由題意得f(x)=asin 2x-b·sin(2x+φ)-.g(x)=sin(2x+φ),f=f,g=g,g=±1,sin=±1,解得φ=-+kπ,kZ,φ=,g(x)=sin.g(0)=,g(1)=sin>sin,又函數(shù)g(x)的圖象關(guān)于直線x=對稱且函數(shù)g(x)在區(qū)間上單調(diào)遞增,<1-,g>g(1),于是g(0)<g(1)<g,從而f(0)<f(1)<f.9.ABD 解析: 依題意f(x)=(kZ),畫出函數(shù)f(x)的大致圖象如圖所示.由圖象知,x,f(x)[-1,3],A錯誤;函數(shù)f(x)的最小正周期為2π,B錯誤;函數(shù)f(x)在區(qū)間上單調(diào)遞減,C正確;函數(shù)f(x)的對稱中心為(kπ,0)(kZ),D錯誤.10.BD 解析: 由函數(shù)f(x)=sin在區(qū)間(π,2π)上沒有最值,2kπ-2ωπ-<4ωπ-2kπ+,2kπ+2ωπ-<4ωπ-2kπ+,kZ;解得k-ω,k+ω,kZ,2π-π=π,T2π,2π,ω.ω>,所以<ω.所以可取k=0,ω,f(x)在區(qū)間(π,2π)上單調(diào)遞減;所以A錯誤,B正確;x[0,π],2ωx-,2ωπ-,所以f(x)在區(qū)間[0,π]上只有一個零點,所以C錯誤,D正確.11.235° 解析: 由三角函數(shù)的定義可得cos α==sin 215°=cos 235°,sin α==cos 215°=sin 235°,所以α=235°.12. 解析: 由題意f=sin=1?ω-=2kπ+(kZ)?ω=k+(kZ),k>0,ω2,Tπ與已知矛盾;k<0,ω<0,與已知不符,k=0,ω=滿足題意.13.- 解析: f(x)的最小正周期為T,因為f(x+π)=f(x),所以nT=π(nN*),所以T=(nN*),所以ω=2n(nN*),f=1,所以當x=,ωx+φ=n·+φ=+2kπ(nN*,kZ),所以φ=+2kπ-n·(nN*,kZ),因為0<φ<,所以0<+2kπ-n·(nN*,kZ),整理得1<n-12k<3(nN*,kZ),因為n-12kZ(nN*,kZ),所以n-12k=2(nN*,kZ),所以φ=+2kπ-(2+12k)·(kZ),n·+2kπ(nN*,kZ),所以+2kπ(nN*,kZ),所以f=sin=sin-=sin=sin=-(nN*,kZ).14.0 解析: 由于f(x)=sin 4x-2cos 4x=sin(4x-φ)(其中tan φ=2),所以函數(shù)f(x)的最小正周期T=,f(x)f(x0),因此f(x)x=x0處取得最小值,x0+T=x0+,所以點f(x)圖象的對稱中心,fx0+=0.

相關(guān)試卷

新高考數(shù)學二輪復習專題突破練8三角函數(shù)的圖象與性質(zhì)含答案:

這是一份新高考數(shù)學二輪復習專題突破練8三角函數(shù)的圖象與性質(zhì)含答案,共7頁。試卷主要包含了單項選擇題,多項選擇題,填空題等內(nèi)容,歡迎下載使用。

人教版新高考數(shù)學二輪復習習題訓練--專題突破練20 直線與圓:

這是一份人教版新高考數(shù)學二輪復習習題訓練--專題突破練20 直線與圓,共5頁。試卷主要包含了單項選擇題,多項選擇題,填空題等內(nèi)容,歡迎下載使用。

人教版新高考數(shù)學二輪復習習題訓練--專題突破練19 統(tǒng)計與概率解答題:

這是一份人教版新高考數(shù)學二輪復習習題訓練--專題突破練19 統(tǒng)計與概率解答題,共7頁。試卷主要包含了6,∑i=172=7,,產(chǎn)品質(zhì)量是企業(yè)的生命線,643>5等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

人教版新高考數(shù)學二輪復習習題訓練--專題突破練17 統(tǒng)計與統(tǒng)計案例

人教版新高考數(shù)學二輪復習習題訓練--專題突破練17 統(tǒng)計與統(tǒng)計案例

人教版新高考數(shù)學二輪復習習題訓練--專題突破練6 利用導數(shù)證明問題

人教版新高考數(shù)學二輪復習習題訓練--專題突破練6 利用導數(shù)證明問題

人教版新高考數(shù)學二輪復習習題訓練--專題突破練2 函數(shù)的圖象與性質(zhì)

人教版新高考數(shù)學二輪復習習題訓練--專題突破練2 函數(shù)的圖象與性質(zhì)

人教版新高考數(shù)學二輪復習習題訓練--專題突破練1 ??夹☆}點過關(guān)檢測

人教版新高考數(shù)學二輪復習習題訓練--專題突破練1 常考小題點過關(guān)檢測

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部