
回顧:矩形有哪些性質(zhì)?
(2)∠ABC=∠BCD=∠ADC=∠BAD=90O
(3) OA=OB=OC=OD(矩形的對(duì)角線相等且互相平分)
木工師傅(1)測(cè)量?jī)山M對(duì)邊,發(fā)現(xiàn)兩組對(duì)邊分別相等;(2)將直角尺靠緊窗框的一個(gè)角,測(cè)得這是直角.由此說(shuō)明這個(gè)窗框是矩形你知道這是為什么嗎?
有一個(gè)角是直角的平行四邊形叫做矩形
2、要判定一個(gè)四邊形是矩形只要說(shuō)明幾個(gè)角是直角?為什么?
矩形的判定定理1:有三個(gè)角是直角的四邊形是矩形.
∵∠A=∠B=∠C=90°,∴四邊形ABCD是矩形
1、命題“矩形的四個(gè)角都是直角”的逆命題是什么?
逆命題:四個(gè)角都是直角的四邊形是矩形。
測(cè)量?jī)山M對(duì)邊,發(fā)現(xiàn)兩組對(duì)邊分別相等; 測(cè)量對(duì)角線,發(fā)現(xiàn)兩條對(duì)角線相等.
由此說(shuō)明這個(gè)窗框是矩形你知道這是為什么嗎?(用所學(xué)的知識(shí)去證明)
如圖,在□ABCD中,AC=BD
你覺(jué)得矩形還有其它判定方法嗎?
在□ABCD中,AB=CD
又∵AC=BD,BC=CB
∴⊿ABC≌⊿DCB
∴∠ABC=∠DCB
又∵∠ABC+∠DCB=180°
∴∠ABC=∠DCB=90°
在□ABCD中,AO=OC,BO=DO,
∴∠OAB=∠OBA,∠OBC=∠OCB
∵∠OAB+∠OBA+∠OBC+∠OCB=180°
∴∠OBA+∠OBC=90°即∠ABC=90°
矩形的判定定理2:對(duì)角線相等的平行四邊形是矩形;
有一個(gè)角是直角的平行四邊形叫做矩形(定義)有三個(gè)角是直角的四邊形是矩形(矩形的判定定理1)對(duì)角線相等的平行四邊形是矩形(矩形的判定定理2)
1、判斷下命題是否正確,并說(shuō)明理由。
(1)對(duì)角互補(bǔ)的平行四邊形是矩形。
(2)一組鄰角相等的平行四邊形是矩形。
(3)對(duì)角線相等的四邊形是矩形。
(4)內(nèi)角都相等的四邊形是矩形。
2、如圖,AC,BD是矩形ABCD的兩條對(duì)角線,AE=CG=BF=DH.求證:四邊形EFGH是矩形
在矩形ABCD中, AC=BD , AO=CO=BO=DO
∵AE=CG=BF=DH
∴ OE=OG=OF=OH, EG=FH
∴四邊形EFGH是平行四邊形
∴四邊形EFGH是矩形
[問(wèn)題]一張四邊形紙板ABCD形狀如圖,(1)若要從這張紙板中剪出一個(gè)平行四邊形,并且使它的四個(gè)頂點(diǎn)分別落在四邊形ABCD的四條邊上,可怎樣剪?
⑵四邊形ABCD滿足什么情況下中點(diǎn)四邊形EFGH為矩形?并說(shuō)明理由.
解:分別?。粒?,BC,CD,DA的中點(diǎn)E,F,G,H,可剪得中點(diǎn)四邊形EFGH為平行四邊形.
兩條對(duì)角線互相垂直,AC⊥BD
例2、一張四邊形的紙板ABCD的形狀如圖(1),它的兩條對(duì)角線互相垂直。如果要從這張紙板中剪出一個(gè)矩形,并且使它的四個(gè)頂點(diǎn)分別落在四邊形ABCD的四條邊上,可以怎么剪?
∵GH是⊿ACD的中位線
(三角形的中位線平行于第三邊且等于第三邊的一半)
∵EH是⊿ABD的中位線
∴∠3=∠2=90°,
(三角形的中位線平行于第三邊)
同理可得:∠4=90°, ∠5=90°
∴四邊形EFGH是矩形.
(三個(gè)角是直角的四邊形是矩形)
1、已知:如圖,Rt△ABC≌Rt△CDA,且AD的對(duì)應(yīng)邊是CB,∠B=∠D=Rt∠; 求證:四邊形ABCD是矩形。
2.已知:如圖,在四邊形ABCD中,AB=AD,CB=CD,點(diǎn)M,N,P,Q分別是AB,BC,CD,DA的中點(diǎn); 求證:四邊形MNPQ是矩形。
這是一份浙教版5.1 矩形教學(xué)ppt課件,共20頁(yè)。PPT課件主要包含了一個(gè)角是直角,矩形的對(duì)邊平行且相等,矩形的四個(gè)角都是直角,矩形的定義,矩形的性質(zhì),復(fù)習(xí)回顧,你知道嗎,幾何語(yǔ)言,合作學(xué)習(xí),請(qǐng)大家自己進(jìn)行證明等內(nèi)容,歡迎下載使用。
這是一份浙教版八年級(jí)下冊(cè)第五章 特殊平行四邊形5.1 矩形備課ppt課件,共19頁(yè)。PPT課件主要包含了溫故知新,平行四邊形的性質(zhì),1從邊看,2從角看,3從對(duì)角線看,4從對(duì)稱看,合作學(xué)習(xí),合作探究,請(qǐng)說(shuō)出你的理由,有一個(gè)直角等內(nèi)容,歡迎下載使用。
這是一份浙教版八年級(jí)下冊(cè)5.1 矩形課文內(nèi)容課件ppt,共17頁(yè)。PPT課件主要包含了矩形有哪些性質(zhì),溫故知新,矩形的判定,∴ADDB,又∵CDDE,∵∠ACBRt∠,矩形的對(duì)角線相等,∴CEAB,∴∠ACB90°,還有其它證法嗎等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功