一、知識梳理
1.直線與圓的位置關(guān)系
設(shè)直線l:Ax+By+C=0(A2+B2≠0),
圓:(x-a)2+(y-b)2=r2(r>0),
d為圓心(a,b)到直線l的距離,聯(lián)立直線和圓的方程,消元后得到的一元二次方程的判別式為Δ.

方法
位置關(guān)系
幾何法
代數(shù)法
相交
d0
相切
d=r
Δ=0
相離
d>r
Δ0),
圓O2:(x-a2)2+(y-b2)2=r(r2>0).

方法
位置關(guān)系
幾何法:圓心距d與r1,r2的關(guān)系
代數(shù)法:兩圓方程聯(lián)立組成方程組的解的情況
相離
d>r1+r2
無解
外切
d=r1+r2
一組實數(shù)解
相交
|r1-r2|0)關(guān)于y軸對稱,則k的最小值為(  )
A. B.
C.2 D.4
解析:選D.如圖,

因為圓C經(jīng)過點(0,1),(0,3),且與x軸正半軸相切,
所以圓心的縱坐標(biāo)為2,半徑為2,則圓心的橫坐標(biāo)為=,
所以圓心坐標(biāo)為(,2),設(shè)過原點與圓相切的直線方程為y=k1x,
由圓心到直線的距離等于半徑,得=2,解得k1=0(舍去)或k1=-4.
所以若圓C上存在點M,使得直線OM與直線y=kx(k>0)關(guān)于y軸對稱,則k的最小值為4.
故選D.
3.(2020·安徽皖南八校聯(lián)考)圓C與直線2x+y-11=0相切,且圓心C的坐標(biāo)為(2,2),設(shè)點P的坐標(biāo)為(-1,y0).若在圓C上存在一點Q,使得∠CPQ=30°,則y0的取值范圍是(  )
A. B.[-1,5]
C.[2-,2+] D.[2-2,2+2]
解析:選C.由點C(2,2)到直線2x+y-11=0的距離為=,可得圓C的方程為(x-2)2+(y-2)2=5.若存在這樣的點Q,當(dāng)PQ與圓C相切時,∠CPQ≥30°,可得sin∠CPQ==≥sin 30°,即CP≤2,則≤2,解得2-≤y0≤2+.故選C.
4.(2020·河南洛陽二模)已知直線x+y-2=0與圓O:x2+y2=r2(r>0)相交于A,B兩點,C為圓周上一點,線段OC的中點D在線段AB上,且3=5,則r=________.
解析:如圖,過O作OE⊥AB于點E,連接OA,則|OE|==,
易知|AE|=|EB|,
不妨令|AD|=5m(m>0),由3=5可得|BD|=3m,|AB|=8m,
則|DE|=4m-3m=m,
在Rt△ODE中,有=()2+m2,①
在Rt△OAE中,有r2=()2+(4m)2,②
聯(lián)立①②,解得r=.

答案:
5.已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四部分,且截x軸所得線段的長為2.
(1)求⊙H的方程;
(2)若存在過點P(a,0)的直線與⊙H相交于M,N兩點,且|PM|=|MN|,求實數(shù)a的取值范圍.
解:(1)設(shè)⊙H的方程為(x-m)2+(y-n)2=r2(r>0),
因為⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四部分,所以圓心H(m,n)一定是兩互相垂直的直線x-y-1=0,x+y-3=0的交點,易得交點坐標(biāo)為(2,1),所以m=2,n=1.
又⊙H截x軸所得線段的長為2,所以r2=12+n2=2.
所以⊙H的方程為(x-2)2+(y-1)2=2.
(2)設(shè)N(x0,y0),由題意易知點M是PN的中點,所以M.
因為M,N兩點均在⊙H上,所以(x0-2)2+(y0-1)2=2,①
+=2,
即(x0+a-4)2+(y0-2)2=8,②
設(shè)⊙I:(x+a-4)2+(y-2)2=8,
由①②知⊙H與⊙I:(x+a-4)2+(y-2)2=8有公共點,從而2-≤|HI|≤2+,
即≤≤3,
整理可得2≤a2-4a+5≤18,
解得2-≤a≤1或3≤a≤2+,
所以實數(shù)a的取值范圍是[2-,1]∪[3,2+].
6.如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點M,N(點M在點N的左側(cè)),且|MN|=3.

(1)求圓C的方程;
(2)過點M任作一直線與圓O:x2+y2=4相交于A,B兩點,連接AN,BN,求證:kAN+kBN為定值.
解:(1)因為圓C與y軸相切于點T(0,2),可設(shè)圓心的坐標(biāo)為(m,2)(m>0),
則圓C的半徑為m,
又|MN|=3,
所以m2=4+=,解得m=,
所以圓C的方程為+(y-2)2=.
(2)證明:由(1)知M(1,0),N(4,0),當(dāng)直線AB的斜率為0時,易知kAN=kBN=0,
即kAN+kBN=0.
當(dāng)直線AB的斜率不為0時,設(shè)直線AB:x=1+ty,將x=1+ty代入x2+y2-4=0,并整理得(t2+1)y2+2ty-3=0.
設(shè)A(x1,y1),B(x2,y2),
所以,則kAN+kBN=+=+===0.
綜上可知,kAN+kBN為定值.


英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部