
湘教版·七年級數(shù)學(xué)下冊復(fù)習(xí)題1①1.計(jì)算:(1) –b2·b5(2) x2·x3·(-x)4解:–b2·b5 = -b7解: x2·x3·(-x)4 = x9(3) (–3a2b3)3解:(–3a2b3)3 = –27a6b92.計(jì)算:(3) (2x+5)(x-1)解:(2x+5)(x-1)= 2x·(x-1) +5 (x-1) = 2x2-2x +5x-5 = 2x2+3x-5 (4) (x-11)(x+11)解:(x-11)(x+11)= x2-112= x2-121(5) (-7x-1)(-1+7x)解:(-7x-1)(-1+7x)= (-1-7x)(-1+7x)= (-1)2- (7x)2= 1- 49x2(6) (-4a-5b)2解:(-4a-5b)2= (4a+5b)2= (4a)2+2·4a·5b+(5b)2= 16a2+40ab+25b23.計(jì)算:(1) (x+13)(x-13)- (x+13)2解: (x+13)(x-13)- (x+13)2= (x+13)[(x-13)- (x+13)]= (x+13)(x-13-x-13)= -26(x+13)= -26x-338(2) (xy+z) (-xy+z)解: (xy+z) (-xy+z)= (z+xy) (z-xy)= z2 -(xy)2= z2 -x2y2(3) 4x2-2x·(-x+2y)解: 4x2-2x·(-x+2y)= 4x2-[2x·(-x)+2x·2y]= 4x2-(-2x2+4xy)= 4x2+2x2-4xy= 6x2-4xy(4) (x-2y)(x+2y)- (x-2y)2解: (x-2y)(x+2y)- (x-2y)2= (x-2y)[(x+2y)- (x-2y)]= (x-2y)(x+2y-x+2y)= 4y(x-2y)= 4xy-8y24.計(jì)算:5002-499×501解: 5002-499×501= 5002-(500-1)×(500+1)= 5002-(5002-1)= 5002-5002+1= 15.已知(x+y)2=4,(x-y)2=10,求x2+y2和xy的值。解:(x+y)2=x2+2xy+y2(x-y)2=x2-2xy+y2(x+y)2 +(x-y)2=2x2+2y2=2(x2+y2)=14所以x2+y2=7(x+y)2 -(x-y)2=4xy=-66.已知am=4,an=5(m,n是正整數(shù)),求a2m+n的值。解:a2m+n= a2m· an= (am)2 · an= 42 · 5= 807.(1) 計(jì)算 2(x+y)(x-y)- (x+y)2+(x-y)2解:2(x+y)(x-y)- (x+y)2+(x-y)2= 2(x+y)(x-y)- [(x+y)2-(x-y)2]= 2(x2-y2)- 4xy= 2x2-2y2- 4xy7.2x2-2y2- 4xy8.已知兩個(gè)正方形的邊長之和是20cm,面積之差是40cm2,求這兩個(gè)正方形的邊長。解:設(shè)兩個(gè)正方形的邊長分別為 x cm,y cm,且 x > y。答: 這兩個(gè)正方形的邊長分為 11cm和9cm。由數(shù)量關(guān)系,得 x+y=20x2-y2=40化簡,得 x =11y=99. (1)已知a-b=2,ab=1,求a2+b2的值解: 因?yàn)?a - b = 2, 所以 (a-b)2 = 4, 則 a2 - 2ab + b2 = 4. 又因?yàn)?ab = 1, 所以 a2 - 2×1 + b2 = 4, 所以 a2 + b2 = 6.10. (1) 試用圖①解釋(a+b)(a-b)=a2-b2解: 邊長為a的正方形的面積為a2 邊長為b的正方形的面積為b2所以 (a+b)(a-b)=a2-b2梯形面積之和還可表示為:邊長為a的正方形的面積-邊長為b的正方形的面積= a2- b2①(2) 試用圖②解釋(a+b+c)2=a2+b2+c2+2ab+2ac+2bc解: 邊長為 a + b + c 的正方形的面積為(a+b+c)2由圖可知,大正方形所分成的 9 塊圖形的面積之和為 a2+b2+c2+2ab+2ac+2bc,所以 (a+b+c)2=a2+b2+c2+2ab+2ac+2bc.②11. 小王說:“814-275-97是5的倍數(shù)”你贊成他的說法嗎?為什么?解:814-275-97= (34) 4-(33)5-(32)7= 316-315-314= 314(32-3-1)= 5×314我贊成他的說法, 因?yàn)榛喓蟮?×314 結(jié)果必然為5的倍數(shù)。12. 觀察下面4個(gè)等式32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6.(1) 寫出第5個(gè)式子.(1) 72=6+62+7(2) 如果用n表示正整數(shù),請用含字母n的等式表示通過觀察發(fā)現(xiàn)的規(guī)律,并說明規(guī)律成立的理由.解(2) (n+2)2=(n+1)+(n+1) 2+(n+2)(n+1)+(n+1) 2+(n+2)= n+1+n2+2n+1+n+2= n2+4n+4= (n+2)213. 計(jì)算下列各式(x-1)(x+1)=_______________(x-1)(x2+x+1)=_______________(x-1)(x3+x2 +x+1)=_______________(1)由此可發(fā)現(xiàn):(x-1)(xn+xn-1 +···+x+1)=_________________(只要求寫出結(jié)果)x2-1x3-1x4-1xn+1-1(2)利用(1)計(jì)算 36+35+34+33+32+4解:36+35+34+33+32+4= 36+35+34+33+32+3+114. (1)已知m,n均為常數(shù),若(x+3)2(x2+mx+n)的乘積既不含二次項(xiàng),又不含一次項(xiàng),則m+n的值為多少?解:(x+3)2(x2+mx+n)= (x2+6x+9)(x2+mx+n)= x4+mx3+nx2+6x3+6mx2+6nx+9x2+9mx+9n= x4+(m+6)x3+(n+6m+9)x2+(6n+9m)x+9n由題意得:解得所以 m+n=114. (2)已知a,b,c均為常數(shù),若多項(xiàng)式M與多項(xiàng)式x2-3x+1的乘積為2x4+ax3+bx2+cx-3,則2a+b+c的值為多少?解:設(shè):M=2x2+mx-3(2x2+mx-3)(x2-3x+1)= 2x4-6x3+2x2+mx3-3mx2+mx-3x2+9x-3= 2x4(m-6)x3+(2-3m-3)x2+(m+9)x-3由題意得:解得所以 2a+b+c=2(m-6)+(-3m-1)+m+9=-41.從課后習(xí)題中選取;2.完成練習(xí)冊本課時(shí)的習(xí)題.課后作業(yè)
微信掃碼,快速注冊
注冊成功