①第二次操作后,從左往右第四個整式為:;
②經(jīng)過6次操作后,將得到65個整式;
③第10次操作后,從左往右第2個整式為:;
④經(jīng)過4次操作后,若,則所有整式的值之和為85.
以上四個結(jié)論正確的個數(shù)為( )
A.1B.2C.3D.4
2.(2023春·重慶北碚·九年級西南大學附中??茧A段練習)已知點在二次函數(shù)上,其中,,……,,令,,……,;為的個位數(shù)字(n為正整數(shù)),則下列說法:
①;②;③;④的最小值為,此時;⑤的個位數(shù)字為6.
正確的有( )個
A.2B.3C.4D.5
3.(2023春·重慶九龍坡·九年級重慶實驗外國語學校??奸_學考試)已知代數(shù)式,,,下列結(jié)論中,正確的個數(shù)是( )
①若,則;
②若,則一次函數(shù)的圖象必定經(jīng)過第一、三、四象限;
③若x,y,z為正整數(shù),且,則;
④若,,且x為方程的一個實根,則與的值相等;
⑤若,,則的值為28.
A.1B.2C.3D.4
4.(2022秋·重慶沙坪壩·九年級重慶南開中學校考期末)根據(jù)絕對值定義:可將表示為,故化簡可得,,或四種不同結(jié)果,給出下列說法:
①化簡一共有8種不同的結(jié)果;
②化簡一共有8種不同的結(jié)果;
③若,(為正整數(shù)),則當時,.
以上說法中正確的個數(shù)為( )
A.0個B.1個C.2個D.3個
5.(2023秋·重慶·九年級重慶市第七中學校??计谀┯衝個依次排列的整式:第1項是,用第1項乘以,所得之積記為,將第1項加上得到第2項,再將第2項乘以得到,將第2項加得到第3項,再將第3項乘以得到,以此類推;某數(shù)學興趣小組對此展開研究,得到4個結(jié)論:
①第5項為;②;③若第2023項的值為0,則;④當時,第m項的值為.以上結(jié)論正確的個數(shù)為( )
A.1B.2C.3D.4
6.(2023秋·重慶九龍坡·九年級重慶市育才中學??计谀┮阎鷶?shù)式,,,下列結(jié)論:
①若,則;
②若,則;
③若,b為關(guān)于a的方程的一個解,則;
④若,則;其中正確的個數(shù)是( ).
A.1B.2C.3D.4
7.(2022秋·重慶江北·九年級重慶十八中校考期末)定義:對于確定順序的三個數(shù)a,b,c,計算,,,將這三個計算結(jié)果的最大值稱為a,b,c的“極數(shù)”:例如:1,-3,1,因為,,,所以1,2,3的“極數(shù)”為,下列說法正確的個數(shù)為( )
①3,1,-4的“極數(shù)”是36;
②若x,y,0的“極數(shù)”為0,則x和y中至少有1個數(shù)是負數(shù);
③存在2個數(shù)m,使得m,-6,2的極數(shù)為;
A.0個B.1個C.2個D.3個
8.(2023秋·重慶九龍坡·九年級重慶實驗外國語學校??计谀┯幸来闻帕械?個整式:x,x+7,x﹣2,對任意相鄰的兩個整式,都用右邊的整式減去左邊的整式,所得之差寫在這兩個整式之間,可以產(chǎn)生一個新整式串:x,7,x+7,﹣9,x﹣2,則稱它為整式串1;將整式串1按上述方式再做一次操作,可以得到整式串2;以此類推.通過實際操作,得出以下結(jié)論:
①整式串2為:x,7﹣x,7,x,x+7,﹣x﹣16,﹣9,x+7,x﹣2;
②整式串3共17個整式;
③整式串3的所有整式的和比整式串2的所有整式的和小2;
④整式串2021的所有整式的和為3x﹣4037;
上述四個結(jié)論正確的有( )個.
A.1B.2C.3D.4
9.(2022秋·重慶沙坪壩·九年級重慶八中校考期末)我們在初中已經(jīng)學會了估算的值,現(xiàn)在用表示距離最近的正整數(shù).(n為正整數(shù))比如:表示距離最近的正整數(shù),∴;表示距離最近的正整數(shù),∴;表示距離最近的正整數(shù),∴……利用這些發(fā)現(xiàn)得到以下結(jié)論:
①;②時,n的值有3個;③;④;⑤當時,n的值為2550.
五個結(jié)論中正確的結(jié)論有( )個.
A.2B.3C.4D.5
10.(2022秋·重慶渝中·九年級重慶巴蜀中學??计谀€硬幣分別單獨放在桌面上,其中有個硬幣反面朝上,其余硬幣正面朝上.規(guī)定一次操作必須同時翻轉(zhuǎn)4個不同的硬幣,次操作的目標是使所有的硬幣都正面朝上.
①如果,而,那么不能實現(xiàn)目標
②如果,而,那么最小等于
③如果且(為正整數(shù)),若,那么不能實現(xiàn)目標
以上判斷正確的個數(shù)有( )
A.0個B.1個C.2個D.3個
11.(2022秋·重慶渝中·九年級重慶巴蜀中學??茧A段練習)關(guān)于x的三次三項式(其中a,b,c,d均為常數(shù)),關(guān)于x的二次三項式(e,f均為非零常數(shù)),下列說法中正確的有( )
①當為關(guān)于x的三次三項式時,則;
②當多項式A與B的乘積中不含項時,則;
③;
④當關(guān)于x的方程有兩個相等的實根時,則;
⑤若當B中x取值為和時,多項式B的值相等,則e的最大值為2.
A.①②④B.①③④C.①④⑤D.①③④⑤
12.(2022·重慶合川·九年級重慶市合川中學??计谀╆P(guān)于x,y的二次三項式(m為常數(shù)),下列結(jié)論正確的有( )
①當時,若,則
②無論x取任何實數(shù),等式都恒成立,則
③若,則
④滿足的正整數(shù)解共有25個
A.1個B.2個C.3個D.4個
13.(2022秋·重慶萬州·九年級重慶市萬州第二高級中學??计谀┮阎獌蓚€多項式,,x為實數(shù),將A、B進行加減乘除運算:
①若A+B=10,則;
②,則x需要滿足的條件是;
③,則關(guān)于x的方程無實數(shù)根;
④若x為正整數(shù)(),且為整數(shù),則1,2,4,5.
上面說法正確的有( )
A.1個B.2個C.3個D.4個
14.(2022秋·重慶·九年級重慶一中??茧A段練習)若定義一種新運算:,例如:,,下列說法:
①;
②若,則,;
③的解集為或;
④函數(shù)與直線(為常數(shù))有3個交點,則.
其中正確的個數(shù)是( )
A.4B.3C.2D.1
15.(2022秋·重慶萬州·九年級重慶市萬州第二高級中學??计谥校┮阎鷶?shù)式,,,下列結(jié)論:
①若,則;
②若,且是方程的一個實根,則;
③若,,為正整數(shù),且,則;
④若,則或.其中正確的個數(shù)是( )
A.1B.2C.3D.4
16.(2022秋·重慶沙坪壩·九年級重慶八中??茧A段練習)新定義:對非負實數(shù)x用“四舍五入”的法則精確到個位的值記為,下列說法正確的個數(shù)為( )
①(為圓周率):
②如果,則實數(shù)x的取值范圍為.
③若,則
④滿足的所有x的值有且只有五個.
A.1B.2C.3D.4
17.(2022秋·重慶·九年級重慶市第十一中學校校考階段練習)已知多項式,多項式.
①若多項式是完全平方式,則或

③若,,則
④若,則
⑤代數(shù)式的最小值為2022
以上結(jié)論正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
18.(2022秋·重慶·九年級重慶市第七中學校??计谥校┮阎诙囗検街腥我饧咏^對值,加絕對值后仍只有減法運算,然后按給出的運算順序進行化簡,稱為“取非負數(shù)操作”.例如:
,.
下列說法:
①至少存在一種“取非負數(shù)操作”,使其運算結(jié)果與原多項式相等;
②至少存在一種“取非負數(shù)操作”,使其運算結(jié)果一定為負數(shù);
③所有可能的“取非負數(shù)操作”共有種不同運算結(jié)果.
其中正確的個數(shù)是( )
A.B.C.D.
19.(2022秋·重慶渝中·九年級重慶巴蜀中學??计谥校┯衝個依次排列的整式:第一項是a2,第二項是a2+2a+1,用第二項減去第一項,所得之差記為b1,將b1加2記為b2,將第二項與b2相加作為第三項,將b2加2記為b3,將第三項與b3相加作為第四項,以此類推;某數(shù)學興趣小組對此展開研究,得到4個結(jié)論:
①b3=2a+5;
②當a=2時,第3項為16;
③若第4項與第5項之和為25,則a=7;
④第2022項為(a+2022)2;
⑤當n=k時,b1+b2+…+bk=2ak+k2;
以上結(jié)論正確的是( )
A.①②⑤B.①③⑤C.①②④D.②④⑤
20.(2022秋·重慶渝中·九年級重慶巴蜀中學??奸_學考試)有n個依次排列的整式:第1項是,用第1項乘以,所得之積記為,將第1項加上得到第2項,再將第2項乘以得到,將第2項加上得到第3項,以此類推;下面4個結(jié)論中正確結(jié)論的個數(shù)為( )
①第4項為;
②;
③若第2022項的值為0,則;
④當時,第k項的值為.
A.1B.2C.3D.4

相關(guān)試卷

(天津?qū)S?中考數(shù)學二輪復習考點分類訓練專題01 旋轉(zhuǎn)(選擇題共35道)(2份,原卷版+解析版):

這是一份(天津?qū)S?中考數(shù)學二輪復習考點分類訓練專題01 旋轉(zhuǎn)(選擇題共35道)(2份,原卷版+解析版),文件包含天津?qū)S弥锌紨?shù)學二輪復習考點分類訓練專題01旋轉(zhuǎn)選擇題共35道原卷版doc、天津?qū)S弥锌紨?shù)學二輪復習考點分類訓練專題01旋轉(zhuǎn)選擇題共35道解析版doc等2份試卷配套教學資源,其中試卷共43頁, 歡迎下載使用。

(上海專用)中考數(shù)學二輪復習考點分類訓練專題07 新定義問題(中考重難點題型)20題(2份,原卷版+解析版):

這是一份(上海專用)中考數(shù)學二輪復習考點分類訓練專題07 新定義問題(中考重難點題型)20題(2份,原卷版+解析版),文件包含上海專用中考數(shù)學二輪復習考點分類訓練專題07新定義問題中考重難點題型20題原卷版doc、上海專用中考數(shù)學二輪復習考點分類訓練專題07新定義問題中考重難點題型20題解析版doc等2份試卷配套教學資源,其中試卷共45頁, 歡迎下載使用。

(上海專用)中考數(shù)學二輪復習考點分類訓練專題01 數(shù)與式一(有理數(shù)、實數(shù)、代數(shù)式35題)(2份,原卷版+解析版):

這是一份(上海專用)中考數(shù)學二輪復習考點分類訓練專題01 數(shù)與式一(有理數(shù)、實數(shù)、代數(shù)式35題)(2份,原卷版+解析版),文件包含上海專用中考數(shù)學二輪復習考點分類訓練專題01數(shù)與式一有理數(shù)實數(shù)代數(shù)式35題原卷版doc、上海專用中考數(shù)學二輪復習考點分類訓練專題01數(shù)與式一有理數(shù)實數(shù)代數(shù)式35題解析版doc等2份試卷配套教學資源,其中試卷共21頁, 歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

中考數(shù)學二輪復習名校模擬題重要考點分類匯專題01代數(shù)證明(選擇題)(原卷版+解析)

中考數(shù)學二輪復習名校模擬題重要考點分類匯專題01代數(shù)證明(選擇題)(原卷版+解析)

專題01 代數(shù)證明(選擇題精選32道)-備戰(zhàn)2024年中考數(shù)學二輪復習之高頻考點高效訓練(重慶專用)

專題01 代數(shù)證明(選擇題精選32道)-備戰(zhàn)2024年中考數(shù)學二輪復習之高頻考點高效訓練(重慶專用)

中考數(shù)學二輪復習重難點復習題型05 圓的相關(guān)證明與計算 類型一 圓的基本性質(zhì)證明與計算(專題訓練)(2份打包,原卷版+解析版)

中考數(shù)學二輪復習重難點復習題型05 圓的相關(guān)證明與計算 類型一 圓的基本性質(zhì)證明與計算(專題訓練)(2份打包,原卷版+解析版)

中考數(shù)學二輪復習重難點復習題型05 圓的相關(guān)證明與計算 類型二 與切線有關(guān)的證明與計算(專題訓練)(2份打包,原卷版+解析版)

中考數(shù)學二輪復習重難點復習題型05 圓的相關(guān)證明與計算 類型二 與切線有關(guān)的證明與計算(專題訓練)(2份打包,原卷版+解析版)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部