
1.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=7,S6=63,則數(shù)列{nan}的前n項(xiàng)和為( )
A.-3+(n+1)×2nB.3+(n+1)×2n
C.1+(n+1)×2nD.1+(n-1)×2n
二、解答題
2.在公差不為零的等差數(shù)列 SKIPIF 1 < 0 中,前五項(xiàng)和 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 依次成等比數(shù)列,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).
(1)求 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ;
(2)設(shè)數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且 SKIPIF 1 < 0 Sn=2n﹣1.
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=( SKIPIF 1 < 0 )x,數(shù)列{bn}滿足條件b1=f(﹣1),f(bn+1) SKIPIF 1 < 0 .
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn SKIPIF 1 < 0 ,求數(shù)列{cn}的前n項(xiàng)和Tn.
4.?dāng)?shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ,滿足 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ;
(2)設(shè)數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 并證明: SKIPIF 1 < 0 .
5.已知數(shù)列 SKIPIF 1 < 0 是公差不為零的等差數(shù)列,若 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 成等比數(shù)列.
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=3an-3,其中n∈N*.
(1)證明:數(shù)列{an}為等比數(shù)列;
(2)設(shè)bn=2n-1,cn= SKIPIF 1 < 0 ,求數(shù)列{cn}的前n項(xiàng)和Tn.
7.已知等比數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)記 SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
8.已知數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
(3)若存在正整數(shù) SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 成立,求實(shí)數(shù) SKIPIF 1 < 0 的取值范圍.
9.已知數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .設(shè) SKIPIF 1 < 0 .
(1)求證:數(shù)列 SKIPIF 1 < 0 是等比數(shù)列;
(2)求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 .
10.已知等比數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)定義:首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“ SKIPIF 1 < 0 數(shù)列”,證明:數(shù)列 SKIPIF 1 < 0 是“ SKIPIF 1 < 0 數(shù)列”;
(2)記等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和記為 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)的和 SKIPIF 1 < 0 .
11.已知等比數(shù)列 SKIPIF 1 < 0 的公比 SKIPIF 1 < 0 ,且滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
12.已知各項(xiàng)都大于1的數(shù)列{an}的前n項(xiàng)和為Sn,4Sn-4n+1=an2:數(shù)列{bn}的前n項(xiàng)和為T(mén)n,bn+Tn=1.
(1)分別求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=anbn,若對(duì)任意的n∈N*.不等式5(λn+3bn)-2bnSn>λn(c1+c2+c3+…+cn)恒成立,試求實(shí)數(shù)λ的取值范圍.
13.已知等差數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)的和為 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和 SKIPIF 1 < 0 .
14.記等比數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)令 SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和 SKIPIF 1 < 0 .
15.已知數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)的和為 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和 SKIPIF 1 < 0 .
16.已知數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求證: SKIPIF 1 < 0 是等比數(shù)列,并求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,若不等式 SKIPIF 1 < 0 對(duì)一切 SKIPIF 1 < 0 恒成立,求 SKIPIF 1 < 0 的取值范圍.
17.已知數(shù)列{an}的首項(xiàng)為0,且2anan+1+an+3an+1+2=0.
(1)證明數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,且 SKIPIF 1 < 0 ,若不等式(-1)nλ<Sn+3×2n+1對(duì)一切n∈N*恒成立,求λ的取值范圍.
18.已知等比數(shù)列{an}的公比大于1,且滿足a3+a5=90,a4=27.
(1)求{an}的通項(xiàng)公式;
(2)記bn=lg3an,求數(shù)列{an(bn+1)}的前n項(xiàng)和Tn.
19.已知在等差數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,其前8項(xiàng)和 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式﹔
(2)設(shè)數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
20.已知等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 和 SKIPIF 1 < 0 的等差中項(xiàng)為 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
21.甲?乙兩名同學(xué)在復(fù)習(xí)時(shí)發(fā)現(xiàn)他們?cè)?jīng)做過(guò)的一道數(shù)列題目因紙張被破壞導(dǎo)致一個(gè)條件看不清,具體如下等比數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,已知____________,
(1)判斷 SKIPIF 1 < 0 的關(guān)系并給出證明.
(2)若 SKIPIF 1 < 0 ,設(shè) SKIPIF 1 < 0 , SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,證明 SKIPIF 1 < 0 .
甲同學(xué)記得缺少的條件是首項(xiàng) SKIPIF 1 < 0 的值,乙同學(xué)記得缺少的條件是公比q的值,并且他倆都記得第(1)問(wèn)的答案是 SKIPIF 1 < 0 成等差數(shù)列.如果甲?乙兩名同學(xué)記得的答案是正確的,請(qǐng)通過(guò)推理把條件補(bǔ)充完整并解答此題.
22.已知數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 且滿足 SKIPIF 1 < 0 .
(1)求證:數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,并求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)求證:對(duì)于數(shù)列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的充要條件是 SKIPIF 1 < 0 .
23.?dāng)?shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,點(diǎn) SKIPIF 1 < 0 在直 SKIPIF 1 < 0 上.
(1)求證:數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,并求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ;
24.已知數(shù)列 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)令 SKIPIF 1 < 0 ,證明:數(shù)列 SKIPIF 1 < 0 為等差數(shù)列,并求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 ,證明: SKIPIF 1 < 0 .
25.已知 SKIPIF 1 < 0 是遞增的等差數(shù)列, SKIPIF 1 < 0 、 SKIPIF 1 < 0 是方程 SKIPIF 1 < 0 的根
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
三、填空題
50.求和 SKIPIF 1 < 0 ____________. (用數(shù)字作答)
這是一份高考數(shù)學(xué)一輪復(fù)習(xí)全套word講義專題10數(shù)列求和方法之錯(cuò)位相減法(原卷版+解析),共48頁(yè)。試卷主要包含了單選題,解答題,填空題等內(nèi)容,歡迎下載使用。
這是一份2024年新高考數(shù)學(xué)培優(yōu)專練10 數(shù)列求和方法之錯(cuò)位相減法(原卷版+解析),文件包含專題10數(shù)列求和方法之錯(cuò)位相減法原卷版docx、專題10數(shù)列求和方法之錯(cuò)位相減法教師版docx等2份試卷配套教學(xué)資源,其中試卷共48頁(yè), 歡迎下載使用。
這是一份新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)突破練習(xí)專題10 數(shù)列求和方法之錯(cuò)位相減法(含解析),共42頁(yè)。試卷主要包含了單選題,解答題,填空題等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功