
第Ⅰ卷
一、選擇題(本大題共6個小題,每小題2分,共12分.在每個小題給出的四個選項中,只有一項符合題目要求,請選出并在答題卡上將該項涂黑)
第Ⅱ卷
二、填空題(本大題共10小題,每小題2分,共20分)
7.x≠±18. m(x+1)29. 24°10. 1
11.(12-45)12. 45°13. 21514. 2.25或4.75
15.m<﹣216. 914
三、解答題(本大題共11個小題,共88分.解答應寫出文字說明,證明過程或演算步驟)
17.(6分)
解:解不等式x+12-1<x,得x>﹣1,···················································2分
解不等式x>3(x﹣1),得x<32,························································4分
∴不等式組的解集為﹣1<x<32,
∴不等式組的整數(shù)解為0,1.····························································6分
18.(6分)
解:(1-aa-3)÷a2-3aa2-6a+9
=a-3-aa-3?(a-3)2a(a-3)
=-3a,·············································································4分
當a=23時,原式=-323=-32.···················································6分
19.(8分)
解:設每件售價應定為x元,則每件的銷售利潤為(x﹣40)元,日銷售量為20+60-x5×10=(140﹣2x)件,
依題意得:(x﹣40)(140﹣2x)=(60﹣40)×20,·········································3分
整理得:x2﹣110x+3000=0,
解得:x1=50,x2=60(不合題意,舍去).
答:每件售價應定為50元.······························································6分
20.(8分)
解:(1)本次共調查了10÷20%=50名學生,
故答案為:50;·········································································2分
(2)B類學生有:50×24%=12(人),
D類學生有:50﹣10﹣12﹣16﹣4=8(人),
補全的條形統(tǒng)計圖如圖所示;
············································4分
(3)m%=16÷50×100%=32%,
即m=32,············································5分
類別D所對應的扇形圓心角α的度數(shù)是:360°×850=57.6°,······························6分
故答案為:32,57.6;
(4)400×16+8+450=224(人),
即估計該校七年級有224名學生寒假在家做家務的總時間不低于20小時.····················8分
21.(8分)
解:(1)∵明明家客廳里裝有一種開關(如圖所示),從左到右依次分別控制著A(樓梯),B(客廳),C(走廊),D(洗手間)四盞電燈,
∴明明任意按下一個開關,打開的不一定是樓梯燈,打開的不可能是臥室燈,打開的可能是客廳燈,打開走廊燈的概率是14,
故選項A、B、D不符合題意,選項C符合題意,
故選:C;············································································3分
(2)畫樹狀圖得:
················································6分
共有12個等可能的結果,客廳燈和走廊燈亮的結果有2個,
∴客廳燈和走廊燈亮的概率為212=16.···················································8分
22.(8分)
解:(1)如圖,點E、F為所作;
······················································2分
(2)∵四邊形ABCD為矩形,
∴CD=AB=3,AD=BC=BE,∠A=∠D=90°,
在Rt△DEF中,∵sin∠DEF=DFEF=35,
∴設DF=3x,EF=5x,
∴DE=4x,
∵FC=FE=5x,
∴CD=5x+3x=3,
解得x=38,··········································································5分
∴DE=4x=32,
設BC=m,則BE=AD=m,
∴AE=m-32,
在Rt△ABE中,32+(m-32)2=m2,
解得m=154,
即BC的長為154.······································································8分
故答案為:154.
23.(8分)
(1)證明:∵EF∥AC,
∴∠EFC=∠OCF,
在△ODC和△EDF中,
∠EFC=∠OCFDF=DC∠FDE=∠CDO,
∴△ODC≌△EDF(ASA),····························································2分
(2)解:四邊形OCEF是正方形,理由如下,
由(1)可得,△ODC≌△EDF(ASA);
∴OC=EF,且EF∥AC,
∴四邊形OCEF是平行四邊形,························································4分
∴∠FEO=∠EOC,OD=ED,
∵OD=DC,且∠BEC=45°,
∴∠DEC=∠DCE=45°,
∴∠CDE=180°﹣45°﹣45°=90°,即OE⊥CF,
∴平行四邊形OCEF是菱形,··························································6分
∵△CDE是等腰直角三角形,且OE=CF,
∴菱形OCEF是正方形.······························································8分
24.(8分)
解:過點B作BG⊥D'D,垂足為G,延長EC、GB交于點F.
則四邊形GFED是矩形.
∴DE=FG=50cm,GD=EF.
在Rt△GAB中,∵AB=25cm,
∴sin37°=GBAB,cs37°=GAAB,
∴GB≈25×0.60=15(cm),GA≈25×0.80=20(cm).
∴BF=DF﹣BG=50﹣15=35(cm).·····················································2分
∵∠ABC=72°,∠D'AB=37°,
∴∠GBA=90°﹣∠D′AB=53°.
∴∠CBF=180°﹣∠GBA﹣∠ABC=55°.
∴∠BCF=90°﹣∠CBF=35°.························································4分
∵tan35°=BFCF,
∴CF≈350.70=50(cm).·······························································6分
∴FE=CE+CF=50+130=180(cm).
∴GD=FE=180(cm),
∴AD=GD﹣AG=180﹣20=160(cm).·················································8分
答:安裝師傅應將支架固定在離地面160cm的位置.
25.(8分)
解:(1)△BCD與△BAC相似,理由:
連接OC,如圖,
∵BC為⊙O的切線,
∴OC⊥BC,
∴∠OCD+∠DCB=90°.
∵AD為直徑,
∴∠ACD=90°,
∴∠A+∠ADC=90°,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠DCB=∠A.
∵∠CBD=∠ABC,
∴△BCD∽△BAC;···································································3分
(2)由(1)知:∠A=∠BCD,
∴tan∠A=tan∠BCD=12,
∵∠ACD=90°,
∴tan∠A=CDAC=12.
∵△BCD∽△BAC,
∴BDBC=CDAC=12.
∵⊙O的半徑為3,
∴AD=6.·············································································5分
設BD=x,則BC=2x,OB=3+x,
∵OC2+BC2=OB2,
∴32+(2x)2=(3+x)2,
解得:x=0(不合題意,舍去)或x=2.
∴BC=2x=4.·······································································8分
26.(10分)
解:(1)∵拋物線y=ax2+bx+c的頂點D的坐標為(﹣2,9),
∴可設y=a(x+2)2+9,
又∵拋物線過點B(0,5),代入得:
5=4a+9,
∴a=﹣1,
∴y=﹣(x+2)2+9
=﹣x2﹣4x+5,
∴拋物線的解析式為y=﹣x2﹣4x+5;·····················································2分
(2)∵拋物線y=﹣x2﹣4x+5與坐標軸分別交于A、B、C三點,且B的坐標為(0,5),
∴當y=0時,﹣x2﹣4x+5=0,
解得x1=﹣5,x2=1,
∴A(1,0),C(﹣5,0),
又∵D(﹣2,9),
∴直線BC的解析式為y=x+5;
設直線CD的解析式為y=kx+b,將C(﹣5,0),D(﹣2,9)代入,得:
0=-5k+b9=-2k+b,
解得:k=3b=15,
∴直線CD的解析式為y=3x+15.························································4分
設點P的坐標為(x,0),則G(x,x+5),H(x,3x+15).
∴S△CGH=12HG×CP
=12(5+x)(3x+15﹣x﹣5)
=12(5+x)(2x+10)
=(5+x)(x+5)
=(x+5)2,
設拋物線的對稱軸交直線BC于點K,如圖:
∵頂點D的坐標為(﹣2,9),
∴對稱軸為直線x=﹣2,
∴K(﹣2,3),
∴DK=9﹣3=6,
∴S△BCD=S△DKC+S△DKB
=12×6×3+12×6×2
=15,
∴若線段HG把△CBD的面積分成相等的兩部分,則(x+5)2=12×15,
解得:x1=30-102,x2=-10-302(舍),
∴P(30-102,0);····································································6分
(3)如圖,設點M的坐標為(m,m+5),
∵C(﹣5,0),D(﹣2,9),
∴CD=(-5+2)2+(9-0)2=310,
當CD與DM是菱形的兩邊時,則CD=DM,
∴310=(-2-m)2+(9-m-5)2,
解得m1=﹣5(不合題意,舍去),m2=7,
∴點M(7,12);·······································································8分
當CD與CM''是菱形的兩邊時,則CD=CM'',
∴310=(-5-m)2+(m+5)2,
解得m=±35-5,
∴點M(35-5,35)或點M(﹣35-5,﹣35);······································9分
當DM'與CM'是菱形的兩邊時,則CM'=DM',
∴(m+5)2+(m+5)2=(m+2)2+(m+5-9)2,
解得m=-54,
∴點M(-54,154).····································································10分
綜上所述,點M的坐標為(7,12)或(35-5,35)或(﹣35-5,﹣35)或(-54,154).
27.(10分)
解:(1)∵四邊形ABCD是正方形,
∴∠ABC=∠D=90°,AB=BC=CD=AD,
∴∠BAC=∠ACB=45°,∠ACD=∠DAC=45°,
∵EF⊥AC,
∴∠FEC=90°,
∴∠EFC=90°﹣∠ACF=90°﹣45°=45°,
∴∠EFC=∠ECF=∠ECG,
∴EF=EC,
∵BE⊥EG,
∴∠BEG=90°,
∴∠BEG=∠FEG,
∴∠BEC+∠CEG=∠BEG+∠FEB,
∴∠FEB=∠CEG,
∴△BEF≌△GEC(ASA),
∴BF=CG,
故答案為:BF=CG;·································································2分
(2)∵四邊形ABCD是矩形,
∴∠BCD=90°,
∴∠BCE+∠ACD=90°,
∵EF⊥AC,
∴∠FEC=90°,
∴∠BCE+∠EFB=90°,∠FEB+∠BEC=90°,
∴∠EFB=∠ECG,
又∵BE⊥EG,
∴∠CEG+∠BEC=90°,
∴∠FEB=∠CEG,
∴△BFE∽△GCE,
∴BFCG=EFEC,·········································································4分
在Rt△ABC中,tan∠ACB=ABBC=23,
∴tan∠ECF=23,
∴EFEC=23,
∴BFCG=23;···········································································6分
(3)過點E作EM⊥CD于M,EN⊥BC于點N,
∵E為AC的中點,
∴AC=EC,
∵EM⊥DC,AD⊥DC,
∴EM∥AD,
∴CMDM=ECAE,
∴DM=CM=1,·····································································8分
同理可得BN=CN=32,
由(2)知△BFE∽△GCE,
∴∠EBF=∠G,
∴tan∠EBN=ENBN=23=tanG=EMGM,
∴32CG+1=23,
∴CG=54,
∴S△CEG=12CG?EM=12×54×32=1516.·····················································10分1
2
3
4
5
6
B
B
D
C
C
C
這是一份2023年中考考前押題密卷:數(shù)學(江蘇南京卷)(參考答案),共13頁。
這是一份2023年中考考前押題密卷:數(shù)學(江蘇南京卷)(全解全析),共26頁。
這是一份2023年中考考前押題密卷:數(shù)學(江蘇南京卷)(考試版)A3,共5頁。
注冊成功