典例1 (1)已知數(shù)列{an}中,a1=3,an+1=2an+1,則an=________.
(2)已知數(shù)列{an}中,a1=1,an+1=2an+3n,則an=________.
典例2 (2023·濰坊模擬)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=a2=1,an=2an-1+3an-2(n≥3),則下列結(jié)論正確的是( )
A.?dāng)?shù)列{an-an+1}為等比數(shù)列
B.?dāng)?shù)列{an+1+2an}為等比數(shù)列
C.S40=eq \f(1,4)(320-1)
D.a(chǎn)n=eq \f(3n-1+?-1?n-1,2)
典例3 若a1>0,a1≠1,an+1=eq \f(2an,1+an),n∈N*.
(1)求證:an+1≠an;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

(2)令a1=eq \f(1,2),寫出a2,a3,a4,a5的值,并求出這個(gè)數(shù)列的通項(xiàng)公式an.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[總結(jié)提升]
1.形如an+1=eq \f(pan,ran+s)(p,r,s為常數(shù))的類型,可通過兩邊同時(shí)取倒數(shù)的方法構(gòu)造新數(shù)列求解.
2.形如an+1=pan+An+B(p,A,B為常數(shù))的類型,可令an+1+λ(n+1)+μ=p(an+λn+μ),求出λ,μ的值即可知{an+λn+μ}為等比數(shù)列,進(jìn)而可求an.
3.形如an+1=pan+Aqn(p,A為常數(shù))的類型,當(dāng)p≠q時(shí),可令an+1+λqn+1=p(an+λqn),求出λ的值即可知{an+λqn}是等比數(shù)列,進(jìn)而可求an,當(dāng)p=q時(shí)可化為eq \f(an+1,qn)=eq \f(an,qn-1)+A,即eq \f(an+1,qn)-eq \f(an,qn-1)=A(常數(shù))知eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,qn-1)))為等差數(shù)列,進(jìn)而可求an.
4.形如an+1=pan+qan-1的類型,轉(zhuǎn)化為an+1+λan=p(an+λan-1)的類型.求出λ,p的值,可知{an+λan-1}是等差數(shù)列還是等比數(shù)列,進(jìn)而可求an.
1.(2023·南京模擬)如圖所示的三角形圖案是謝爾賓斯基三角形.已知第n個(gè)圖案中黑色與白色三角形的個(gè)數(shù)之和為an,數(shù)列{an}滿足a1=1,an+1=3an+1(n≥1),那么下面各數(shù)中是數(shù)列{an}中的項(xiàng)的是( )
A.121 B.122 C.123 D.124
2.(2023·南京模擬)在數(shù)列{an}中,a1=7,a2=24,對(duì)所有的正整數(shù)n都有an+1=an+an+2,則a2 024等于( )
A.-7 B.24 C.-13 D.25
3.(2023·南充模擬)已知數(shù)列{an}中,a1=2,an+1=eq \f(2an,an+2)(n∈N*),則數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n+1)))的前10項(xiàng)和S10等于( )
A.eq \f(16,11) B.eq \f(18,11) C.eq \f(20,11) D.2
4.若Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=2,a2=10,且Sn+1+2Sn-1-3Sn=2×3n,則S2 022等于( )
A.32 023-22 024+1 B.32 022-22 023+1
C.2·32 022-22 023 D.2·32 023-22 024
5.(多選)(2023·鄭州模擬)數(shù)列{an}滿足a1=-21,a2=-12,an+1+an-1=2an-2(n≥2),Sn是{an}的前n項(xiàng)和,則下列說法正確的是( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n-8)))是等差數(shù)列
B.a(chǎn)n=-n2+12n+32
C.a(chǎn)6是數(shù)列{an}的最大項(xiàng)
D.對(duì)于任意正整數(shù)m,n(n>m),Sn-Sm的最大值為10
6.(多選)(2023·岳陽模擬)設(shè)首項(xiàng)為1的數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1=2Sn+n-1(n∈N*),則下列結(jié)論正確的是( )
A.?dāng)?shù)列{Sn+n}為等比數(shù)列
B.?dāng)?shù)列{an}的通項(xiàng)公式為an=2n-1-1
C.?dāng)?shù)列{an+1}為等比數(shù)列
D.?dāng)?shù)列{2Sn}的前n項(xiàng)和為2n+2-n2-n-4
7.已知a1=1,當(dāng)n≥2時(shí),an=eq \f(1,2)an-1+2n-1,則{an}的通項(xiàng)公式為________.
8.在數(shù)列{an}中,若a1=1,a2=4,an+2+2an=3an+1,則數(shù)列{an}的通項(xiàng)公式為____________.
9.(2023·泉州模擬)設(shè)數(shù)列{an}滿足a1=3,an=2an-1-n+2(n≥2).
(1)證明:數(shù)列{an-n}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)數(shù)列{bn}滿足an=2nbn,求b1+b2+b3+…+bn的值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
10.(2023·朝陽模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn=eq \f(n,n+1)(n∈N*),數(shù)列{bn}滿足b1=1,且bn+1=eq \f(bn,bn+2)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)對(duì)于n∈N*,試比較bn+1與an的大小.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
微專題22 數(shù)列的遞推關(guān)系
[考情分析] 數(shù)列的通項(xiàng)公式求法是高考數(shù)學(xué)的必考考點(diǎn),通常在選擇題、填空題與解答題第一問中考查.難度中等,但有時(shí)在同一個(gè)題目中會(huì)涉及多種方法,綜合性較強(qiáng).
考點(diǎn)一 形如an+1=pan+f(n)型
典例1 (1)已知數(shù)列{an}中,a1=3,an+1=2an+1,則an=________.
答案 2n+1-1
解析 由題意知an+1=2an+1,在等式兩邊同時(shí)加1得an+1+1=2an+2=2(an+1),
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(an+1))是首項(xiàng)為a1+1=4,公比為2的等比數(shù)列.
∴an+1=4·2n-1=2n+1,
∴an=2n+1-1.
(2)已知數(shù)列{an}中,a1=1,an+1=2an+3n,則an=________.
答案 3n-2n
解析 方法一 由題意知an+1=2an+3n,在等式兩邊同時(shí)除以2n得eq \f(an+1,2n)=eq \f(an,2n-1)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n,
令bn=eq \f(an,2n-1),則bn+1-bn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n,由遞推式得
b2-b1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))1,
b3-b2=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))2,

bn-bn-1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1.
上述各式相加得bn-b1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))1+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))2+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1=eq \f(\f(3,2)·\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1)),1-\f(3,2))=eq \f(3n,2n-1)-3,
又∵b1=eq \f(a1,20)=1,∴bn=eq \f(3n,2n-1)-3+b1=eq \f(3n,2n-1)-2,
∴an=2n-1·bn=2n-1eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3n,2n-1)-2))=3n-2n.
方法二 由題意知an+1=2an+3n,在等式兩邊同時(shí)除以3n得eq \f(an+1,3n)=eq \f(2an,3n)+1,
化簡得eq \f(an+1,3n)=eq \f(2,3)·eq \f(an,3n-1)+1,
令bn=eq \f(an,3n-1),則bn+1=eq \f(2,3)bn+1,
等式兩邊同時(shí)減3得bn+1-3=eq \f(2,3)(bn-3),
則eq \b\lc\{\rc\}(\a\vs4\al\c1(bn-3))是b1-3=eq \f(a1,30)-3=-2為首項(xiàng),eq \f(2,3)為公比的等比數(shù)列,
∴等比數(shù)列{bn-3}的通項(xiàng)公式bn-3=(-2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))n-1,
化簡得bn=-eq \f(2n,3n-1)+3,
∴an=3n-1·bn=3n-1eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2n,3n-1)+3))=3n-2n.
方法三 待定系數(shù)法構(gòu)造eq \b\lc\{\rc\}(\a\vs4\al\c1(an+λ·3n))為等比數(shù)列.
設(shè)an+1+λ·3n+1=2(an+λ·3n),
對(duì)比系數(shù)求得λ=-1,
∴數(shù)列{an-3n}是以a1-3=-2為首項(xiàng),2為公比的等比數(shù)列,
an-3n=(-2)·2n=-2n,
∴an=3n-2n.
跟蹤訓(xùn)練1 (1)已知在數(shù)列{an}中,a1=1,an+1=2an+2n+1,則an=________.
答案 3·2n-2n-3
解析 由題意知an+1=2an+2n+1,等式左右同加2(n+1)+3得
an+1+2(n+1)+3=2an+2n+1+2(n+1)+3=2an+4n+6=2(an+2n+3),
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(an+2n+3))是以a1+5=6為首項(xiàng),2為公比的等比數(shù)列,
∴an+2n+3=3·2n,
化簡得an=3·2n-2n-3.
(2)已知在數(shù)列{an}中,a1=1,且an+1=2an+n2-n+1,則通項(xiàng)公式an=________.
答案 3·2n-n2-n-3
解析 設(shè)an+1+x(n+1)2+y(n+1)+z=2(an+xn2+yn+z),
對(duì)比系數(shù)得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y-2x=-1,,z-x-y=1,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y=1,,z=3,))
所以eq \b\lc\{\rc\}(\a\vs4\al\c1(an+n2+n+3))是以6為首項(xiàng),2為公比的等比數(shù)列.
所以an+n2+n+3=6·2n-1=3·2n,
故an=3·2n-n2-n-3.
考點(diǎn)二 形如an+1=pan+qan-1型
典例2 (2023·濰坊模擬)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=a2=1,an=2an-1+
3an-2(n≥3),則下列結(jié)論正確的是( )
A.?dāng)?shù)列{an-an+1}為等比數(shù)列
B.?dāng)?shù)列{an+1+2an}為等比數(shù)列
C.S40=eq \f(1,4)(320-1)
D.a(chǎn)n=eq \f(3n-1+?-1?n-1,2)
答案 D
解析 由題意得a3=2a2+3a1=5,a4=2a3+3a2=10+3=13,
由于a1-a2=0,故數(shù)列{an-an+1}不是等比數(shù)列,A錯(cuò)誤;
a2+2a1=1+2=3,a3+2a2=5+2=7,a4+2a3=13+10=23,
由于eq \f(7,3)≠eq \f(23,7),故數(shù)列{an+1+2an}不為等比數(shù)列,B錯(cuò)誤;
當(dāng)n≥3時(shí),an=2an-1+3an-2,
即an+an-1=3(an-1+an-2),
又a1+a2=1+1=2,
故{an+1+an}是首項(xiàng)為2,公比為3的等比數(shù)列,
故an+1+an=2×3n-1,
故a2+a1=2,a4+a3=2×32,…,a40+a39=2×338,
以上式子相加得S40=2×(1+32+34+…+338)=2×eq \f(1-340,1-9)=eq \f(340-1,4),C錯(cuò)誤;
因?yàn)閍n+1+an=2×3n-1,
所以an+2+an+1=2×3n,
兩式相減得an+2-an=2·3n-2·3n-1=4·3n-1,
當(dāng)n=2k時(shí),a2k-a2k-2=4×32k-3,a2k-2-a2k-4=4×32k-5,…,a4-a2=4×3,
以上式子相加得a2k-a2=4×(3+33+…+32k-3)=4×eq \f(3-32k-1,1-9)=eq \f(32k-1-3,2),
故a2k=eq \f(32k-1-3,2)+a2=eq \f(32k-1-1,2),
而a2=1也符合該式,故a2k=eq \f(32k-1-1,2),
令2k=n,得an=eq \f(3n-1-1,2)=eq \f(3n-1+?-1?n-1,2),
當(dāng)n=2k-1時(shí),a2k-1-a2k-3=4×32k-4,a2k-3-a2k-5=4×32k-6,…,a3-a1=4×30,
以上式子相加得a2k-1-a1=4×(32k-4+32k-6+…+30)=4×eq \f(1-32k-2,1-9)=eq \f(32k-2-1,2),
故a2k-1=eq \f(32k-2-1,2)+a1=eq \f(32k-2+1,2),
而a1=1也符合該式,故a2k-1=eq \f(32k-2+1,2),
令2k-1=n,得an=eq \f(3n-1+?-1?n-1,2),
綜上,an=eq \f(3n-1+?-1?n-1,2),D正確.
跟蹤訓(xùn)練2 (多選)(2023·吉安模擬)在數(shù)列{an}中,若a1=0,a2=1,2an+2=an+1+an(n∈N*),則下列結(jié)論正確的是( )
A.{an+1-an}是等比數(shù)列
B.a(chǎn)11=eq \f(31,47)
C.0≤an≤1
D.a(chǎn)8m),Sn-Sm的最大值為10
答案 ACD
解析 A,B選項(xiàng),由an+1+an-1=2an-2,整理得(an+1-an)-(an-an-1)=-2,
故eq \b\lc\{\rc\}(\a\vs4\al\c1(an-an-1))是公差為-2的等差數(shù)列,首項(xiàng)a2-a1=9,故an-an-1=13-2n(n≥2),
由此可得an-1-an-2=15-2n,…,a3-a2=7,a2-a1=9,
累加得an=-n2+12n-32=(n-8)(4-n),n≥2,
又a1=-21也符合該式,
∴an=(n-8)(4-n),n∈N*,
由此可得eq \f(an,n-8)=4-n,故eq \f(an+1,n+1-8)-eq \f(an,n-8)=4-(n+1)-4+n=-1,
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n-8)))是等差數(shù)列,故A正確,B不正確;
C選項(xiàng),∵an=-n2+12n-32=-(n-6)2+4,
當(dāng)n=6時(shí),an=-(n-6)2+4取最大值,
∴a6是數(shù)列{an}的最大項(xiàng),故C正確;
D選項(xiàng),對(duì)于任意正整數(shù)m,n(n>m),Sn-Sm=am+1+am+2+…+an,
由a1a11>…,
故Sn-Sm=3+4+3=10時(shí),Sn-Sm取得最大值,最大值為10,故D正確.
6.(多選)(2023·岳陽模擬)設(shè)首項(xiàng)為1的數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1=2Sn+n-1(n∈N*),則下列結(jié)論正確的是( )
A.?dāng)?shù)列{Sn+n}為等比數(shù)列
B.?dāng)?shù)列{an}的通項(xiàng)公式為an=2n-1-1
C.?dāng)?shù)列{an+1}為等比數(shù)列
D.?dāng)?shù)列{2Sn}的前n項(xiàng)和為2n+2-n2-n-4
答案 AD
解析 ∵Sn+1=2Sn+n-1,
∴Sn+1+(n+1)=2(Sn+n),
又S1+1=2≠0,
∴數(shù)列{Sn+n}是首項(xiàng)和公比都為2的等比數(shù)列,
故選項(xiàng)A正確;
Sn+n=2n,∴2Sn=2n+1-2n,
∴數(shù)列{2Sn}的前n項(xiàng)和為eq \f(22?1-2n?,1-2)-2×eq \f(n?n+1?,2)=2n+2-n2-n-4,
故選項(xiàng)D正確;
Sn+n=2n,∴Sn=2n-n,
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1-1,
當(dāng)n=1時(shí),a1=1,
∴an=eq \b\lc\{\rc\ (\a\vs4\al\c1(1,n=1,,2n-1-1,n≥2,))
故選項(xiàng)B錯(cuò)誤;
∵an+1=eq \b\lc\{\rc\ (\a\vs4\al\c1(2,n=1,,2n-1,n≥2,))
∴eq \f(a2+1,a1+1)≠eq \f(a3+1,a2+1),
∴數(shù)列{an+1}不是等比數(shù)列,
故選項(xiàng)C錯(cuò)誤.
7.已知a1=1,當(dāng)n≥2時(shí),an=eq \f(1,2)an-1+2n-1,則{an}的通項(xiàng)公式為________.
答案 an=eq \f(3,2n-1)+4n-6
解析 設(shè)an+An+B=eq \f(1,2)[an-1+A(n-1)+B],
∴an=eq \f(1,2)an-1-eq \f(1,2)An-eq \f(1,2)A-eq \f(1,2)B,
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(1,2)A=2,,-\f(1,2)A-\f(1,2)B=-1,))
解得eq \b\lc\{\rc\ (\a\vs4\al\c1(A=-4,,B=6,))
又a1-4+6=3,
∴{an-4n+6}是以3為首項(xiàng),eq \f(1,2)為公比的等比數(shù)列,
∴an-4n+6=3×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,
∴an=eq \f(3,2n-1)+4n-6.
8.在數(shù)列{an}中,若a1=1,a2=4,an+2+2an=3an+1,則數(shù)列{an}的通項(xiàng)公式為____________.
答案 an=3·2n-1-2
解析 ∵an+2+2an=3an+1,
∴an+2-an+1=2an+1-2an=2(an+1-an),
∴{an+1-an}為等比數(shù)列,首項(xiàng)為a2-a1=3,公比為2,
∴an+1-an=3·2n-1,
∵a2-a1=3,a3-a2=6,a4-a3=12,…,an-an-1=3·2n-2(n≥2),
∴(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=an-a1=3·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1-2n-1,1-2)))=3·2n-1-3,
又a1=1,∴an=3·2n-1-2(n≥2),
又a1=1符合上式,所以an=3·2n-1-2.
9.(2023·泉州模擬)設(shè)數(shù)列{an}滿足a1=3,an=2an-1-n+2(n≥2).
(1)證明:數(shù)列{an-n}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足an=2nbn,求b1+b2+b3+…+bn的值.
(1)證明 ∵a1=3,an=2an-1-n+2(n≥2),
∴an-n=2[an-1-(n-1)],
∵eq \f(an-n,an-1-?n-1?)=2(n≥2),
∴數(shù)列{an-n}是首項(xiàng)為a1-1=2,公比為2的等比數(shù)列,
∴an-n=2n,則an=2n+n.
(2)解 因?yàn)閍n=2nbn,所以bn=eq \f(an,2n)=eq \f(2n+n,2n)=1+eq \f(n,2n),
令cn=eq \f(n,2n),且數(shù)列{cn}的前n項(xiàng)和為Tn,
則Tn=eq \f(1,21)+eq \f(2,22)+eq \f(3,23)+eq \f(4,24)+…+eq \f(n,2n),①
eq \f(1,2)Tn=eq \f(1,22)+eq \f(2,23)+eq \f(3,24)+…+eq \f(n,2n+1),②
由①-②得eq \f(1,2)Tn=eq \f(1,21)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n)-eq \f(n,2n+1)
=eq \f(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n))),1-\f(1,2))-eq \f(n,2n+1)=1-eq \f(2+n,2n+1),
則Tn=2-eq \f(2+n,2n),
所以b1+b2+b3+…+bn=Tn+n=n+2-eq \f(2+n,2n)=(n+2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n))).
10.(2023·朝陽模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn=eq \f(n,n+1)(n∈N*),數(shù)列{bn}滿足b1=1,且bn+1=eq \f(bn,bn+2)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)對(duì)于n∈N*,試比較bn+1與an的大?。?br>解 (1)當(dāng)n=1時(shí),a1=S1=eq \f(1,2);
當(dāng)n≥2時(shí),an=Sn-Sn-1=eq \f(n,n+1)-eq \f(n-1,n)=eq \f(1,n?n+1?)=eq \f(1,n2+n),
經(jīng)檢驗(yàn),當(dāng)n=1時(shí),a1=eq \f(1,2)也符合上式,
∴數(shù)列{an}的通項(xiàng)公式為an=eq \f(1,n2+n).
(2)易知bn>0,兩邊取倒數(shù)得eq \f(1,bn+1)=eq \f(bn+2,bn),
整理得eq \f(1,bn+1)+1=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,bn)+1)),∵eq \f(1,b1)+1=2,
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,bn)+1))是以2為首項(xiàng),2為公比的等比數(shù)列,
∴eq \f(1,bn)+1=2×2n-1=2n,
∴bn=eq \f(1,2n-1).
(3)由(1)(2)可知,比較bn+1=eq \f(1,2n+1-1)與an=eq \f(1,n2+n)的大小,
即比較2n+1-1與n2+n的大小.
當(dāng)n=1時(shí),21+1-1=3,12+1=2,有3>2;
當(dāng)n=2時(shí),22+1-1=7,22+2=6,有7>6;
當(dāng)n=3時(shí),23+1-1=15,32+3=12,有15>12,
猜想2n+1-1>n2+n,下面證明:
方法一 當(dāng)n≥4時(shí),
2n+1-1=(1+1)n+1-1=Ceq \\al(0,n+1)+Ceq \\al(1,n+1)+Ceq \\al(2,n+1)+…+Ceq \\al(n-1,n+1)+Ceq \\al(n,n+1)+Ceq \\al(n+1,n+1)-1
≥2Ceq \\al(0,n+1)+2Ceq \\al(1,n+1)+2Ceq \\al(2,n+1)-1
=2+2(n+1)+(n+1)n-1>n2+n,
∴對(duì)于任意的n∈N*都成立,
∴bn+12x+1(ln eq \r(e))2-2=2x-1-2,
∴當(dāng)x∈[4,+∞)時(shí),g′(x)>2x-1-2>0,g(x)即f′(x)在[4,+∞)上單調(diào)遞增,
f′(x)≥f′(4)=25·ln 2-2×4-1>25×ln eq \r(e)-2×4-1=7>0,
∴f(x)在[4,+∞)上單調(diào)遞增,
∴f(x)≥f(4)>24+1-1-42-4=11>0,
∴2x+1-1-x2-x>0,
即2x+1-1>x2+x,
∴對(duì)于任意的n∈N*都成立,
∴bn+1

相關(guān)試卷

高考數(shù)學(xué)專題練 專題三 微專題21 等差數(shù)列、等比數(shù)列(含答案):

這是一份高考數(shù)學(xué)專題練 專題三 微專題21 等差數(shù)列、等比數(shù)列(含答案),共17頁。

高考數(shù)學(xué)專題練 專題三 微專題24 數(shù)列的奇偶項(xiàng)、增減項(xiàng)問題(含答案):

這是一份高考數(shù)學(xué)專題練 專題三 微專題24 數(shù)列的奇偶項(xiàng)、增減項(xiàng)問題(含答案),共13頁。

微專題10 數(shù)列的遞推關(guān)系與通項(xiàng)-2024年高考數(shù)學(xué)二輪微專題系列:

這是一份微專題10 數(shù)列的遞推關(guān)系與通項(xiàng)-2024年高考數(shù)學(xué)二輪微專題系列,共16頁。試卷主要包含了求數(shù)列{an}的通項(xiàng)公式,已知數(shù)列{an}滿足等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

專題三 微重點(diǎn)5 數(shù)列的遞推關(guān)系2024年高考數(shù)學(xué)

專題三 微重點(diǎn)5 數(shù)列的遞推關(guān)系2024年高考數(shù)學(xué)

2023高考數(shù)學(xué)二輪專題  微專題10 數(shù)列的遞推關(guān)系與通項(xiàng)

2023高考數(shù)學(xué)二輪專題 微專題10 數(shù)列的遞推關(guān)系與通項(xiàng)

新高考數(shù)學(xué)復(fù)習(xí)專題59 由遞推關(guān)系求數(shù)列的通項(xiàng)(解析版)

新高考數(shù)學(xué)復(fù)習(xí)專題59 由遞推關(guān)系求數(shù)列的通項(xiàng)(解析版)

新高考數(shù)學(xué)復(fù)習(xí)專題59 由遞推關(guān)系求數(shù)列的通項(xiàng)(原卷版)

新高考數(shù)學(xué)復(fù)習(xí)專題59 由遞推關(guān)系求數(shù)列的通項(xiàng)(原卷版)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部