
第8章 冪的運算章末復(fù)習(xí)思維導(dǎo)圖例1-1、下列計算正確的是( ?。〢.x4+x2=x2 B.(-3xy)2=6x2y2C.y2·y3=y5 D.(a6)2÷(a4)3=a【分析】B.(-3xy)2=9x2y2;D.(a6)2÷(a4)3=a0=1。C?例1-3、(1)已知2a=x,2b=y,求42a+3b的值;(2)已知4a-3b-3=0,求52×252a÷125b+1的值?!痉治觥?1)42a+3b=42a×43b=24a×26b=(2a)4×(2b)6=x4y6;(2)52×252a÷125b+1=52×54a÷53b+3=52+4a-(3b+3)=54a-3b-1=52=25。例1-4、(1)已知16x=a,4y=b,64z=ab,那么x、y、z滿足的等量關(guān)系是____________;(2)如果x=3m+1,y=2-9m,那么用x的代數(shù)式表示y為____________?!痉治觥?1)∵16x=a,4y=b,64z=ab,∴16x·4y=64z,即42x·4y=43z,∴42x+y=43z,即2x+y=3z;2x+y=3z(2)∵x=3m+1,y=2-9m,∴3m=x-1,∴y=2-(3m)2=2-(x-1)2=-x2+2x+1。y=-x2+2x+1例1-5、(1)已知2x·43-x·81+x=32,求x的值;(2)已知2x+2·5x+2=103x-4,求x的值。(2)2x+2·5x+2=(2×5)x+2=10x+2=103x-4,即x+2=3x-4,解得:x=3?!痉治觥?1)2x·43-x·81+x=2x·26-2x·23+3x=2x+6-2x+3+3x=22x+9=25,即2x+9=5,解得:x=-2;例1-6、(1)比較914與279的大?。?2)已知a=255,b=344,c=622,則a、b、c的大小關(guān)系是________(請用字母表示,并用“<”連接)。【分析】(1)∵914=(32)14=328,279=(33)9=327,∴328>327,∴914>279;(2)∵a=255=(25)11=3211,b=344=(34)11=8111,c=622=(62)11=3611,∴3211
注冊成功