?第4章 銳角三角函數(shù)
4.4 解直角三角形的應用
第1課時 仰角、俯角
教學目標
1.理解仰角、俯角的概念.
2.能運用解直角三角形知識解決仰角和俯角有關的實際問題,在解題過程中進一步體會數(shù)形結(jié)合、轉(zhuǎn)化、方程的數(shù)學思想,并從這些問題中歸納出常見的基本模型及解題思路.
教學重難點
重點:仰角、俯角.
難點:利用仰角、俯角解決實際問題.
教學過程
舊知回顧
1.直角三角形三邊的關系:勾股定理(a2+b2=c2);
2.直角三角形兩銳角的關系:兩銳角互余(∠A+∠B=90°);
3.直角三角形邊與角之間的關系:銳角三角函數(shù)

4.互余兩角之間的三角函數(shù)關系:sin A=cos B;
5.同角之間的三角函數(shù)關系:,sin2A+cos2A=1;
6.特殊角30°,45°,60°角的三角函數(shù)值.
新課講授
仰角、俯角的定義
仰角:在視線與水平線所形成的角中,視線在水平線上方的角.
巧記:上仰下俯
俯角:在視線與水平線所形成的角中,視線在水平線下方的角.
【問題】小明想測量塔CD的高度.他在A處仰望塔頂,測得仰角為30°,再往塔的方向前進50 m至B處,測得仰角為60°,那么該塔有多高?(小明的身高忽略不計,結(jié)果精確到1 m)

教師引導,學生分析.


【解】如圖,根據(jù)題意可知,∠A=30°,∠DBC=60°,AB=50 m.
設塔高DC=x m,則∠ADC=60°,∠BDC=30°,

∴ ∴ AC-BC=AB,


答:該塔約有43 m高.
例 如圖,兩建筑物AB和CD的水平距離為120米,已知AB的高度為30米,從A頂部看C的仰角為30° ,求建筑物CD的高度.

【解】在Rt△ACE中,CE=AE·tan30°=120×=403(米).
所以CD=30+403(米).
【變式1】如圖,兩建筑物AB和CD的水平距離為120米,已知從A頂部看C的仰角為30°,從A頂部看D的俯角為60°.求建筑物AB,CD的高度.

【解】如圖,α=30°,β=60°, AE=BD=120米.
∵ tan α=,tan β=,
∴ CE=AE·tan α=120×tan 30°=(米),
DE=AE·tan β=120×tan 60°=(米),
∴ AB=DE=(米),
∴ CD=CE+DE=≈277.1(米).
【變式2】如圖,已知兩建筑物AB和CD,AB的高度為30米,已知從A頂部看C的仰角為30°,從A頂部看D的俯角為45°,求建筑物CD的高度.


【變式3】如圖,已知兩建筑物AB和CD,CD的高度為30米,已知從A頂部看C的仰角為30°,從A頂部看D的俯角為45°,求建筑物AB的高度.


【變式4】如圖,兩建筑物AB和CD的水平距離為120米,已知從C頂部看A的俯角為30°,看B的俯角為60°,求建筑物AB,CD的高度.



【教師總結(jié)】
方法:把數(shù)學問題轉(zhuǎn)化成解直角三角形問題,如果示意圖不是直角三角形,可添加適當?shù)妮o助線,構(gòu)造出直角三角形.
仰角、俯角問題的常見基本模型:
    
   

溫馨提示:當含有兩個(或兩個以上)直角三角形時,若某個三角形不能求解,可考慮設未知數(shù),找出合適的等量關系,列方程求解.
課堂練習
1.如圖,在高出海平面100米的懸崖頂A處,觀測海平面上一艘小船B,并測得它的俯角為45°,則船與觀測者之間的水平距離BC=_______米.

2.如圖,兩建筑物AB和CD的水平距離為30米,從A點測得 D點的俯角為30°,測得C點的俯角為60°,則建筑物CD的高為 米.

3.某鐵塔由塔身和塔座兩部分組成(如左圖所示).為了測得鐵塔的高度,小瑩利用自制的測角儀,在C 點測得塔頂E 的仰角為45°,在D點測得塔頂E的仰角為60°,已知測角儀AC 的高為1.6 m,CD的長為6 m,CD所在的水平線CG⊥EF于點G(如圖所示),求鐵塔EF的高(結(jié)果精確到0.1 m).
 
4.如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,如果此時熱氣球C處的高度CD為100米,點A,D,B在同一直線上,求AB兩點的距離.

參考答案
1.100
2.203
3.解:設DG=x,則EG=x.
∵∠ECG=45°,∠CGE=90°,
∴∠CEG=45°,
∴ EG=CG ,
∴CD+DG=EG,
即6+x=x,解得x=3+3,
∴ EG=×(3+3)≈14.2(m),
EF=EG+GF=14.2+1.6=15.8(m).
答:鐵塔EF的高為15.8 m.
4.解:∵從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,
∴∠BCD=90°-45°=45°,∠ACD=90°-30°=60°.
∵CD⊥AB,CD=100米,
∴△BCD是等腰直角三角形,
∴BD=CD=100米.
在Rt△ACD中,
∵CD=100米,∠ACD=60°,
∴AD=CD·tan60°=100×3=1003(米),
∴AB=AD+BD=1003+100=100(3+1)(米).
答:AB兩點的距離是100(3+1)米.


課堂小結(jié)

布置作業(yè)
教材第125頁做一做,第126頁練習第1,2題.
板書設計
第1課時 仰角、俯角
仰角:在視線與水平線所形成的角中,視線在水平線上方的角.
巧記:上仰下俯
俯角:在視線與水平線所形成的角中,視線在水平線下方的角.
教學反思





































教學反思










































教學反思








































教學反思









































教學反思
















相關教案

初中數(shù)學湘教版九年級上冊第4章 銳角三角函數(shù)4.3 解直角三角形一等獎第2課時教學設計:

這是一份初中數(shù)學湘教版九年級上冊第4章 銳角三角函數(shù)4.3 解直角三角形一等獎第2課時教學設計,共9頁。教案主要包含了坡度,方向角等內(nèi)容,歡迎下載使用。

初中人教版第二十八章 銳角三角函數(shù)28.2 解直角三角形及其應用第1課時教學設計:

這是一份初中人教版第二十八章 銳角三角函數(shù)28.2 解直角三角形及其應用第1課時教學設計,共2頁。教案主要包含了知識與技能,過程與方法,情感、態(tài)度與價值觀,教學重點,教學難點等內(nèi)容,歡迎下載使用。

湘教版九年級上冊4.4 解直接三角形的應用一等獎第1課時教案及反思:

這是一份湘教版九年級上冊4.4 解直接三角形的應用一等獎第1課時教案及反思,共5頁。教案主要包含了創(chuàng)設情境,導入新課等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關教案 更多

初中數(shù)學湘教版九年級上冊4.4 解直接三角形的應用獲獎第1課時教案設計

初中數(shù)學湘教版九年級上冊4.4 解直接三角形的應用獲獎第1課時教案設計

初中數(shù)學23.2解直角三角形及其應用第2課時教學設計

初中數(shù)學23.2解直角三角形及其應用第2課時教學設計

滬科版九年級上冊23.2解直角三角形及其應用第2課時教案設計

滬科版九年級上冊23.2解直角三角形及其應用第2課時教案設計

初中湘教版4.4 解直接三角形的應用教學設計及反思

初中湘教版4.4 解直接三角形的應用教學設計及反思

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
初中數(shù)學湘教版九年級上冊電子課本

4.3 解直角三角形

版本: 湘教版

年級: 九年級上冊

切換課文
所有DOC左下方推薦
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部