2022屆寧夏銀川市高三一模數(shù)學(xué)(理)試題 一、單選題1.已知集合,則    A B C D【答案】C【分析】求出集合后可求.【詳解】因?yàn)?/span>,,所以.故選:C.2||=    A B C D【答案】B【分析】先利用復(fù)數(shù)的除法化簡(jiǎn),再利用復(fù)數(shù)的模長(zhǎng)公式即得解【詳解】由題意,故選:B3.已知,則    A B C D【答案】D【分析】利用兩角和的余弦公式及同角三角函數(shù)的基本關(guān)系得到,再利用同角三角函數(shù)的基本關(guān)系將弦化切,最后代入計(jì)算可得;【詳解】解:由,即,即,則,所以.故選:D4.已知雙曲線的兩條漸近線互相垂直,焦距為8,則的離心率為A B2 C D【答案】D【分析】根據(jù)題意,列出方程組,求得的值,再利用離心率的計(jì)算公式,即可求解.【詳解】由題意,雙曲線的兩條漸近線互相垂直,焦距為8,可得,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查了雙曲線的離心率的求解,其中解答中熟記雙曲線的幾何性質(zhì),合理、準(zhǔn)確列出方程組,求得的值,再利用離心率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5.交通錐,又稱雪糕筒,是一種交通隔離警戒設(shè)施.如圖,某圓錐體交通錐的高為12,側(cè)面積為65π,則該圓錐體交通錐的體積為(    A25π B75π C100π D300π【答案】C【分析】設(shè)出底面半徑,利用側(cè)面積求出半徑,進(jìn)而利用圓錐體積公式進(jìn)行所求解.【詳解】設(shè)該圓錐體交通錐的底面半徑為r,則,解得:,所以該圓錐體交通錐的體積為故選:C6.已知函數(shù)R上的奇函數(shù),當(dāng)時(shí),,若,是自然對(duì)數(shù)的底數(shù),則    A B C D【答案】D【分析】依題意根據(jù)奇函數(shù)的性質(zhì)得到,即可得到,代入函數(shù)解析求出,最后根據(jù)計(jì)算可得;【詳解】解:依題意得,,由,即,得,所以當(dāng)時(shí),所以.故選:D7.我國(guó)18歲的滑雪運(yùn)動(dòng)員谷愛凌在第24屆北京冬奧會(huì)上勇奪兩金一銀,取得了優(yōu)異的成績(jī).在某項(xiàng)決賽中選手可以滑跳三次,然后取三次中最高的分?jǐn)?shù)作為該選手的得分,谷愛凌為了取得佳績(jī),準(zhǔn)備采用目前女運(yùn)動(dòng)員中最難的動(dòng)作進(jìn)行滑跳,設(shè)每輪滑跳的成功率為0.4,利用計(jì)算機(jī)產(chǎn)生0~9之間取整數(shù)值的隨機(jī)數(shù),我們用01,2,3表示滑跳成功,4,5,67,89表示滑跳不成功,現(xiàn)以每3個(gè)隨機(jī)數(shù)為一組,作為3輪滑跳的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生如下10組隨機(jī)數(shù):813,502,659,491275,937740,632,845,936.由此估計(jì)谷愛凌“3輪滑跳中至少有1輪成功的概率為(    A0.9 B0.8 C0.7 D0.6【答案】B【分析】由題意,10組隨機(jī)數(shù)中,表示“3輪滑跳全都不成功的有659,845,利用對(duì)立事件,即可得到答案;【詳解】由題意,10組隨機(jī)數(shù)中,表示“3輪滑跳全都不成功的有659,845,共2個(gè),所以估計(jì)谷愛凌“3輪滑跳中至少有1輪成功的概率為.故選:B8.如圖所示的是一個(gè)程序框圖,執(zhí)行該程序框圖,則輸出的值是(     A7 B8 C9 D10【答案】C【分析】模擬執(zhí)行程序,即可得到輸出結(jié)果;【詳解】解:模擬執(zhí)行程序可知:第1循環(huán),,,不滿足,2次循環(huán),,,不滿足3次循環(huán),,,不滿足,4次循環(huán),,,不滿足5次循環(huán),,,不滿足,6次循環(huán),,不滿足7次循環(huán),,,不滿足,8次循環(huán),,,不滿足,9次循環(huán),,,滿足,故輸出的值是9.故選:C9.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期?感染者與其他人的接觸頻率?每次接觸過程中傳染的概率決定,假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為7天,那么感染人數(shù)由1(初始感染者)增加到999大約需要的天數(shù)為(    )(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染……參考數(shù)據(jù):A42 B56 C63 D70【答案】C【分析】設(shè)第n輪感染的人數(shù)為,則數(shù)列,公比的等比數(shù)列,利用等比數(shù)列求和公式,結(jié)合,即可得到答案;【詳解】設(shè)第n輪感染的人數(shù)為,則數(shù)列,公比的等比數(shù)列,,可得,解得,兩邊取對(duì)數(shù)得,所以,故需要的天數(shù)約為.故選:C10.如圖,在四面體中,分別為的中點(diǎn),分別在上,且.給出下列四個(gè)命題:平面;平面;平面;直線交于一點(diǎn).其中正確命題的個(gè)數(shù)為(    A1 B2 C3 D4【答案】B【分析】依題意可得,,即可得到平面,再判斷為相交直線,即可判斷②③,由四邊形為梯形,所以必相交,設(shè)交點(diǎn)為,即可得到,從而判斷;【詳解】解:因?yàn)?/span>,所以,又分別為的中點(diǎn),所以,則,又平面,平面,所以平面因?yàn)?/span>的中點(diǎn),的一個(gè)三等分點(diǎn),所以為相交直線,故與平面必不平行,也不平行平面,因?yàn)?/span>為梯形,所以必相交,設(shè)交點(diǎn)為,平面平面,是平面與平面的一個(gè)交點(diǎn),所以,即直線交于一點(diǎn),故選:B.11ABC的內(nèi)角A,B,C的對(duì)邊分別為a,bc,若,則ABC面積的最大值為(    A B C D【答案】B【分析】根據(jù)題意得到,利用余弦定理和面積公式,化簡(jiǎn)得到,結(jié)合,得到,即可求解.【詳解】,可得,由余弦定理可得.因?yàn)?/span>的面積,所以,因?yàn)?/span>,所以,故當(dāng)時(shí),取得最大值3,此時(shí).故選:B.12.設(shè)函數(shù),已知上單調(diào)遞增,則上的零點(diǎn)最多有(    A2個(gè) B3個(gè) C4個(gè) D5個(gè)【答案】A【分析】先求出函數(shù)的單調(diào)區(qū)間,根據(jù)題意得出參數(shù)的范圍,設(shè),則,由,得出函數(shù)上的零點(diǎn)情況出答案.【詳解】,,得,,,可得.上單詞遞增,則,解得.,則.設(shè),則,因?yàn)?/span>所以函數(shù)上的零點(diǎn)最多有2個(gè).所以上的零點(diǎn)最多有2個(gè).故選:A 二、填空題13.若滿足約束條件的最大值為___________.【答案】6【分析】依題意畫出可行域,數(shù)形結(jié)合,即可求出的最大值;【詳解】解:畫出可行域如下所示:,解得,即,由,則,平移,由圖可知當(dāng)經(jīng)過點(diǎn)時(shí),取得最大值,即,即最大值為6.故答案為:614.已知函數(shù)R上單調(diào)遞增,則m的最小值為___________.【答案】1【分析】根據(jù)題意,由R上恒成立求解.【詳解】因?yàn)楹瘮?shù)R上單調(diào)遞增,所以R上恒成立,R上恒成立,所以.故答案為:115.摩天輪是一種大型轉(zhuǎn)輪狀的機(jī)械建筑設(shè)施,游客坐在摩天輪的座艙里慢慢地往上轉(zhuǎn),可以在高處俯瞰四周景色.如圖,某摩天輪的最高點(diǎn)距離地面的高度為12,轉(zhuǎn)盤的直徑為10,A,B為摩天輪在地面上的兩個(gè)底座,,點(diǎn)P為摩天輪的座艙,則的范圍為______【答案】【分析】由題意可得到PAB中點(diǎn)距離的最大值和最小值,然后根據(jù)數(shù)量積的運(yùn)算,可得到答案.【詳解】設(shè)CAB的中點(diǎn),如圖示:由題意可知: ,又因?yàn)?/span>,所以的取值范圍是,故答案為:16.已知,O為坐標(biāo)原點(diǎn),若在拋物線上存在點(diǎn)N,使得,則的取值范圍是___________.【答案】【分析】MC的一條切線,切點(diǎn)為Q,設(shè),根據(jù)在拋物線上存在點(diǎn)N,使得,得到,然后求得當(dāng)時(shí)的即可.【詳解】MC的一條切線,切點(diǎn)為Q,如圖所示:設(shè),因?yàn)樵趻佄锞€上存在點(diǎn)N,使得,所以,當(dāng)時(shí),直線MQ的方程為代入,可得,,解得所以的取值范圍為.故答案為: 三、解答題17.已知等差數(shù)列滿足.(1)的通項(xiàng)公式;(2),記的前項(xiàng)和為,求.【答案】(1)(2) 【分析】1)設(shè)等差數(shù)列的公差為,根據(jù)等差數(shù)列的通項(xiàng)公式得到,即可求出,從而得到通項(xiàng)公式;2)由(1)可得,即可得到,利用并項(xiàng)求和法計(jì)算可得;【詳解】1)解:設(shè)等差數(shù)列的公差為,所以,所以,所以,解得,.2)解:因?yàn)?/span>,所以,所以所以.18.在一次活動(dòng)課上,老師準(zhǔn)備了4個(gè)大小完全相同的紅包,其中只有一個(gè)紅包里面有100元,其余三個(gè)里面都是白紙.老師邀請(qǐng)甲上臺(tái)隨機(jī)抽取一個(gè)紅包,但不打開紅包,然后老師從剩下的三個(gè)紅包中拿走一個(gè)裝有白紙的紅包,甲此時(shí)可以選擇將自己選中的紅包與剩下的兩個(gè)紅包中的一個(gè)進(jìn)行置換.(1)若以獲得有100元的紅包概率的大小作為評(píng)判的依據(jù),甲是否需要選擇置換?請(qǐng)說明理由.(2)以(1)中的結(jié)果作為置換的依據(jù),記表示甲獲得的金額,求的分布列與期望.【答案】(1)甲需要選擇置換,理由見解析;(2)分布列答案見解析,數(shù)學(xué)期望:. 【分析】1)利用條件概率即求;2)由題可得的可能取值為0,100,分別求概率,即得.【詳解】1)甲需要選擇置換.理由如下:若甲同學(xué)不選擇置換,則獲得有100元的紅包的概率為若甲同學(xué)選擇置換,若甲同學(xué)第一次抽到100元,概率為,置換后概率為0,故為若甲同學(xué)第一次沒有抽到100元,概率為,置換后概率為,故為;則獲得有100元的紅包的概率為因?yàn)?/span>,所以甲需要選擇置換.2)由題可知的可能取值為0,100.,的分布列如下:0100.19.如圖,在四棱錐中,為平行四邊形,,平面,,分別是的中點(diǎn).(1)證明:平面平面.(2)求二面角的余弦值.【答案】(1)證明見解析(2) 【分析】1)連接,通過證明可得答案;2)以為原點(diǎn),,,所在直線分別為,軸建立空間直角坐標(biāo)系,求出面和面的法向量,利用夾角公式求解即可.【詳解】1)證明:連接.因?yàn)?/span>平面,所以又因?yàn)?/span>,且為平行四邊形,,所以為等邊三角形.又因?yàn)?/span>的中點(diǎn),所以又因?yàn)?/span>,所以,因?yàn)?/span>,所以平面,又平面,所以平面平面.2)解:以為原點(diǎn),,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,因?yàn)?/span>平面,所以是平面的一個(gè)法向量.設(shè)平面的法向量為,,,可得,則,.,又二面角的平面角為銳角,所以二面角的余弦值為.20.已知橢圓的焦距為2c,左?右焦點(diǎn)分別是,,其離心率為,圓與圓相交,兩圓的交點(diǎn)在橢圓E.(1)求橢圓E的方程.(2)已知A,B,C為橢圓E上三個(gè)不同的點(diǎn),O為坐標(biāo)原點(diǎn),且OABC的重心.證明:ABC的面積為定值.【答案】(1)(2)證明見解析 【分析】1)由題意得到,再由圓與圓相交,結(jié)合橢圓的定義得到,進(jìn)而求得的值,即可求得橢圓方程;2)當(dāng)AB垂直于x軸時(shí),得到,,求得;當(dāng)ABx軸不垂直時(shí),設(shè)直線的直線方程為,聯(lián)立方程組得到,結(jié)合弦長(zhǎng)公式和點(diǎn)到直線的距離公式,求得,即可求解.【詳解】1)解:由橢圓得的離心率為,即,又由圓與圓,可得圓心分別為,半徑分別為,因?yàn)閳A與圓相交,兩圓的交點(diǎn)在橢圓E上,可得,解得,則,可得,所以橢圓E的方程為.2)證明:設(shè),,當(dāng)AB垂直于x軸時(shí),,因?yàn)?/span>OABC的重心,所以.根據(jù)橢圓的對(duì)稱性,不妨令,此時(shí),,可得.當(dāng)ABx軸不垂直時(shí),設(shè)直線的直線方程為,聯(lián)立方程組,整理得,,,設(shè),則,.代入,得又由,原點(diǎn)的距離所以,所以,即的面積為定值.21.已知函數(shù).(1)討論的單調(diào)性;(2),求的取值范圍.【答案】(1)答案見解析(2) 【分析】1)求導(dǎo),討論導(dǎo)函數(shù)的符號(hào)變化進(jìn)行求解;2)分三種情況進(jìn)行討論:當(dāng)時(shí),適當(dāng)放縮進(jìn)行證明;當(dāng)時(shí),證明恒成立;當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性確定最小值,再討論、進(jìn)行求解.【詳解】1)解:,當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.2)解:若,因?yàn)?/span>,,,,此時(shí),故此時(shí)不可能恒成立.,此時(shí)恒成立.,則上單調(diào)遞減,在上單調(diào)遞增,的最小值在處取到,即.顯然當(dāng)時(shí),,,此時(shí).當(dāng)時(shí),,此時(shí),.綜上所述.22.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(t為參數(shù)).(1)C的直角坐標(biāo)方程;(2)點(diǎn)是曲線C上在第一象限內(nèi)的一動(dòng)點(diǎn),求的最小值.【答案】(1)(2) 【分析】1)平方相加進(jìn)行消參即可;2)由在圓上,設(shè),,表示出后借助三角恒等變換化簡(jiǎn)得,再結(jié)合單調(diào)性求出最小值.【詳解】1)由題可知,所以因?yàn)?/span>,所以C的直角坐標(biāo)方程為2)點(diǎn)是曲線C上在第一象限內(nèi)的一動(dòng)點(diǎn),令,,,則,因?yàn)樯鲜皆?/span>上單調(diào)遞減,故當(dāng)時(shí),取得最小值23.已知函數(shù)(1)求不等式的解集;(2)若關(guān)于x的不等式恒成立,求a的取值范圍.【答案】(1)(2) 【分析】(1)首先分類討論去絕對(duì)值,再求解不等式;2)首先討論時(shí),的范圍,當(dāng)時(shí),不等式化簡(jiǎn)為,利用含絕對(duì)值三角不等式求最值,即可求得的取值范圍.【詳解】1不等式等價(jià)于解得故原不等式的解集為2)當(dāng)時(shí),不等式恒成立,即當(dāng)時(shí),可化為,因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)等號(hào)成立所以,即a的取值范圍為 

相關(guān)試卷

寧夏銀川市第二中學(xué)2022屆高三一模數(shù)學(xué)(理)試題含答案:

這是一份寧夏銀川市第二中學(xué)2022屆高三一模數(shù)學(xué)(理)試題含答案,共18頁(yè)。試卷主要包含了單選題,填空題,雙空題,解答題等內(nèi)容,歡迎下載使用。

2022屆寧夏吳忠市高三一輪聯(lián)考數(shù)學(xué)(理)試題含解析:

這是一份2022屆寧夏吳忠市高三一輪聯(lián)考數(shù)學(xué)(理)試題含解析,共16頁(yè)。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。

寧夏銀川市2022屆高三一模數(shù)學(xué)(理)試題:

這是一份寧夏銀川市2022屆高三一模數(shù)學(xué)(理)試題,共19頁(yè)。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
  • 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開;軟件版本較低時(shí)請(qǐng)及時(shí)更新
  • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對(duì)1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號(hào)

    打開微信就能找資料

  • 免費(fèi)福利

    免費(fèi)福利

返回
頂部