
?江蘇省無錫市2017年中考數(shù)學(xué)試卷
一、選擇題(本大題共10小題,每小題3分,共30分)
1.﹣5的倒數(shù)是( ?。?br />
A. B.±5 C.5 D.﹣
【考點】17:倒數(shù).
【分析】根據(jù)倒數(shù)的定義,即可求出﹣5的倒數(shù).
【解答】解:∵﹣5×(﹣)=1,
∴﹣5的倒數(shù)是﹣.
故選D.
2.函數(shù)y=中自變量x的取值范圍是( ?。?br />
A.x≠2 B.x≥2 C.x≤2 D.x>2
【考點】E4:函數(shù)自變量的取值范圍.
【分析】根據(jù)分式的意義的條件,分母不等于0,可以求出x的范圍.
【解答】解:根據(jù)題意得:2﹣x≠0,
解得:x≠2.
故函數(shù)y=中自變量x的取值范圍是x≠2.
故選A.
3.下列運算正確的是( ?。?br />
A.(a2)3=a5 B.(ab)2=ab2 C.a(chǎn)6÷a3=a2 D.a(chǎn)2?a3=a5
【考點】48:同底數(shù)冪的除法;46:同底數(shù)冪的乘法;47:冪的乘方與積的乘方.
【分析】利用冪的運算性質(zhì)直接計算后即可確定正確的選項.
【解答】解:A、(a2)3=a6,故錯誤,不符合題意;
B、(ab)2=a2b2,故錯誤,不符合題意;
C、a6÷a3=a3,故錯誤,不符合題意;
D、a2?a3=a5,正確,符合題意,
故選D.
4.下列圖形中,是中心對稱圖形的是( ?。?br />
A. B. C. D.
【考點】R5:中心對稱圖形.
【分析】根據(jù)中心對稱圖形的定義逐個判斷即可.
【解答】解:A、不是中心對稱圖形,故本選項不符合題意;
B、不是中心對稱圖形,故本選項不符合題意;
C、是中心對稱圖形,故本選項符合題意;
D、不是中心對稱圖形,故本選項不符合題意;
故選C.
5.若a﹣b=2,b﹣c=﹣3,則a﹣c等于( )
A.1 B.﹣1 C.5 D.﹣5
【考點】44:整式的加減.
【分析】根據(jù)題中等式確定出所求即可.
【解答】解:∵a﹣b=2,b﹣c=﹣3,
∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,
故選B
6.“表1”為初三(1)班全部43名同學(xué)某次數(shù)學(xué)測驗成績的統(tǒng)計結(jié)果,則下列說法正確的是( ?。?br />
成績(分)
70
80
90
男生(人)
5
10
7
女生(人)
4
13
4
A.男生的平均成績大于女生的平均成績
B.男生的平均成績小于女生的平均成績
C.男生成績的中位數(shù)大于女生成績的中位數(shù)
D.男生成績的中位數(shù)小于女生成績的中位數(shù)
【考點】W4:中位數(shù);W1:算術(shù)平均數(shù).
【分析】根據(jù)平均數(shù)的定義分別求出男生與女生的平均成績,再根據(jù)中位數(shù)的定義分別求出男生與女生成績的中位數(shù)即可求解.
【解答】解:∵男生的平均成績是:(70×5+80×10+90×7)÷22=1780÷22=80,
女生的平均成績是:(70×4+80×13+90×4)÷21=1680÷21=80,
∴男生的平均成績大于女生的平均成績.
∵男生一共22人,位于中間的兩個數(shù)都是80,所以中位數(shù)是(80+80)÷2=80,
女生一共21人,位于最中間的一個數(shù)是80,所以中位數(shù)是80,
∴男生成績的中位數(shù)等于女生成績的中位數(shù).
故選A.
7.某商店今年1月份的銷售額是2萬元,3月份的銷售額是4.5萬元,從1月份到3月份,該店銷售額平均每月的增長率是( ?。?br />
A.20% B.25% C.50% D.62.5%
【考點】AD:一元二次方程的應(yīng)用.
【分析】設(shè)每月增長率為x,據(jù)題意可知:三月份銷售額為2(1+x)2萬元,依此等量關(guān)系列出方程,求解即可.
【解答】解:設(shè)該店銷售額平均每月的增長率為x,則二月份銷售額為2(1+x)萬元,三月份銷售額為2(1+x)2萬元,
由題意可得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合題意舍去),
答即該店銷售額平均每月的增長率為50%;
故選:C.
8.對于命題“若a2>b2,則a>b”,下面四組關(guān)于a,b的值中,能說明這個命題是假命題的是( )
A.a(chǎn)=3,b=2 B.a(chǎn)=﹣3,b=2 C.a(chǎn)=3,b=﹣1 D.a(chǎn)=﹣1,b=3
【考點】O1:命題與定理.
【分析】說明命題為假命題,即a、b的值滿足a2>b2,但a>b不成立,把四個選項中的a、b的值分別難度驗證即可.
【解答】解:
在A中,a2=9,b2=4,且3>2,滿足“若a2>b2,則a>b”,故A選項中a、b的值不能說明命題為假命題;
在B中,a2=9,b2=4,且﹣3<2,此時雖然滿足a2>b2,但a>b不成立,故B選項中a、b的值可以說明命題為假命題;
在C中,a2=9,b2=1,且3>﹣1,滿足“若a2>b2,則a>b”,故C選項中a、b的值不能說明命題為假命題;
在D中,a2=1,b2=9,且﹣1<3,此時滿足a2<b2,得出a<b,即意味著命題“若a2>b2,則a>b”成立,故D選項中a、b的值不能說明命題為假命題;
故選B.
9.如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于( ?。?br />
A.5 B.6 C.2 D.3
【考點】MC:切線的性質(zhì);L8:菱形的性質(zhì).
【分析】如圖作DH⊥AB于H,連接BD,延長AO交BD于E.利用菱形的面積公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延長即可解決問題.
【解答】解:如圖作DH⊥AB于H,連接BD,延長AO交BD于E.
∵菱形ABCD的邊AB=20,面積為320,
∴AB?DH=32O,
∴DH=16,
在Rt△ADH中,AH==12,
∴HB=AB﹣AH=8,
在Rt△BDH中,BD==8,
設(shè)⊙O與AB相切于F,連接AF.
∵AD=AB,OA平分∠DAB,
∴AE⊥BD,
∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,
∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,
∴△AOF∽△DBH,
∴=,
∴=,
∴OF=2.
故選C.
10.如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( ?。?br />
A.2 B. C. D.
【考點】PB:翻折變換(折疊問題);KP:直角三角形斜邊上的中線;KQ:勾股定理.
【分析】如圖連接BE交AD于O,作AH⊥BC于H.首先證明AD垂直平分線段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解決問題.
【解答】解:如圖連接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴BC==5,
∵CD=DB,
∴AD=DC=DB=,
∵?BC?AH=?AB?AC,
∴AH=,
∵AE=AB,DE=DB=DC,
∴AD垂直平分線段BE,△BCE是直角三角形,
∵?AD?BO=?BD?AH,
∴OB=,
∴BE=2OB=,
在Rt△BCE中,EC===,
故選D.
二、填空題(本大題共8小題,每小題2分,共16分)
11.計算×的值是 6?。?br />
【考點】75:二次根式的乘除法.
【分析】根據(jù)?=(a≥0,b≥0)進行計算即可得出答案.
【解答】解:×===6;
故答案為:6.
12.分解因式:3a2﹣6a+3= 3(a﹣1)2?。?br />
【考點】55:提公因式法與公式法的綜合運用.
【分析】首先提取公因式3,進而利用完全平方公式分解因式得出答案.
【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.
故答案為:3(a﹣1)2.
13.貴州FAST望遠鏡是目前世界第一大單口徑射電望遠鏡,反射面總面積約250000m2,這個數(shù)據(jù)用科學(xué)記數(shù)法可表示為 2.5×105?。?br />
【考點】1I:科學(xué)記數(shù)法—表示較大的數(shù).
【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).
【解答】解:將250000用科學(xué)記數(shù)法表示為:2.5×105.
故答案為:2.5×105.
14.如圖是我市某連續(xù)7天的最高氣溫與最低氣溫的變化圖,根據(jù)圖中信息可知,這7天中最大的日溫差是 11 ℃.
【考點】18:有理數(shù)大小比較;1A:有理數(shù)的減法.
【分析】求出每天的最高氣溫與最低氣溫的差,再比較大小即可.
【解答】解:∵由折線統(tǒng)計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,
∴這7天中最大的日溫差是11℃.
故答案為:11.
15.若反比例函數(shù)y=的圖象經(jīng)過點(﹣1,﹣2),則k的值為 2 .
【考點】G7:待定系數(shù)法求反比例函數(shù)解析式.
【分析】由一個已知點來求反比例函數(shù)解析式,只要把已知點的坐標(biāo)代入解析式就可求出比例系數(shù).
【解答】解:把點(﹣1,﹣2)代入解析式可得k=2.
16.若圓錐的底面半徑為3cm,母線長是5cm,則它的側(cè)面展開圖的面積為 15π cm2.
【考點】MP:圓錐的計算.
【分析】圓錐的側(cè)面積=底面周長×母線長÷2.
【解答】解:底面半徑為3cm,則底面周長=6πcm,側(cè)面面積=×6π×5=15πcm2.
17.如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2,一平行于AB的直線EF與這兩個半圓分別交于點E、點F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由,EF,,AB所圍成圖形(圖中陰影部分)的面積等于 3﹣﹣?。?br />
【考點】MO:扇形面積的計算;LB:矩形的性質(zhì).
【分析】連接O1O2,O1E,O2F,過E作EG⊥O1O2,過F⊥O1O2,得到四邊形EGHF是矩形,根據(jù)矩形的性質(zhì)得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根據(jù)三角形、梯形、扇形的面積公式即可得到結(jié)論.
【解答】解:連接O1O2,O1E,O2F,
則四邊形O1O2FE是等腰梯形,
過E作EG⊥O1O2,過F⊥O1O2,
∴四邊形EGHF是矩形,
∴GH=EF=2,
∴O1G=,
∵O1E=1,
∴GE=,
∴=;
∴∠O1EG=30°,
∴∠AO1E=30°,
同理∠BO2F=30°,
∴陰影部分的面積=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.
故答案為:3﹣﹣.
18.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于 3 .
【考點】T7:解直角三角形.
【分析】根據(jù)平移的性質(zhì)和銳角三角函數(shù)以及勾股定理,通過轉(zhuǎn)化的數(shù)學(xué)思想可以求得tan∠BOD的值.,本題得以解決
【解答】解:平移CD到C′D′交AB于O′,如右圖所示,
則∠BO′D′=∠BOD,
∴tan∠BOD=tan∠BO′D′,
設(shè)每個小正方形的邊長為a,
則O′B=,O′D′=,BD′=3a,
作BE⊥O′D′于點E,
則BE=,
∴O′E==,
∴tanBO′E=,
∴tan∠BOD=3,
故答案為:3.
三、解答題(本大題共10小題,共84分)
19.計算:
(1)|﹣6|+(﹣2)3+()0;
(2)(a+b)(a﹣b)﹣a(a﹣b)
【考點】4F:平方差公式;2C:實數(shù)的運算;4A:單項式乘多項式;6E:零指數(shù)冪.
【分析】(1)根據(jù)零指數(shù)冪的意義以及絕對值的意義即可求出答案;
(2)根據(jù)平方差公式以及單項式乘以多項式法則即可求出答案.
【解答】解:(1)原式=6﹣8+1=﹣1
(2)原式=a2﹣b2﹣a2+ab=ab﹣b2
20.(1)解不等式組:
(2)解方程: =.
【考點】B3:解分式方程;CB:解一元一次不等式組.
【分析】(1)分別解不等式,進而得出不等式組的解集;
(2)直接利用分式的性質(zhì)求出x的值,進而得出答案.
【解答】解:(1)解①得:x>﹣1,
解②得:x≤6,
故不等式組的解集為:﹣1<x≤6;
(2)由題意可得:5(x+2)=3(2x﹣1),
解得:x=13,
檢驗:當(dāng)x=13時,(x+2)≠0,2x﹣1≠0,
故x=13是原方程的解.
21.已知,如圖,平行四邊形ABCD中,E是BC邊的中點,連DE并延長交AB的延長線于點F,求證:AB=BF.
【考點】L5:平行四邊形的性質(zhì);KD:全等三角形的判定與性質(zhì).
【分析】根據(jù)線段中點的定義可得CE=BE,根據(jù)平行四邊形的對邊平行且相等可得AB∥CD,AB=CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠DCB=∠FBE,然后利用“角邊角”證明△CED和△BEF全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BF,從而得證.
【解答】證明:∵E是BC的中點,
∴CE=BE,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠DCB=∠FBE,
在△CED和△BEF中,,
∴△CED≌△BEF(ASA),
∴CD=BF,
∴AB=BF.
22.甲、乙、丙、丁四人玩撲克牌游戲,他們先取出兩張紅心和兩張黑桃共四張撲克牌,洗勻后背面朝上放在桌面上,每人抽取其中一張,拿到相同顏色的即為游戲搭檔,現(xiàn)甲、乙兩人各抽取了一張,求兩人恰好成為游戲搭檔的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
【考點】X6:列表法與樹狀圖法.
【分析】利用列舉法即可列舉出所有各種可能的情況,然后利用概率公式即可求解.
【解答】解:根據(jù)題意畫圖如下:
共有12中情況,從4張牌中任意摸出2張牌花色相同顏色4種可能,所以兩人恰好成為游戲搭檔的概率==.
23.某數(shù)學(xué)學(xué)習(xí)網(wǎng)站為吸引更多人注冊加入,舉行了一個為期5天的推廣活動,在活動期間,加入該網(wǎng)站的人數(shù)變化情況如下表所示:
時間
第1天
第2天
第3天
第4天
第5天
新加入人數(shù)(人)
153
550
653
b
725
累計總?cè)藬?shù)(人)
3353
3903
a
5156
5881
(1)表格中a= 4556 ,b= 600??;
(2)請把下面的條形統(tǒng)計圖補充完整;
(3)根據(jù)以上信息,下列說法正確的是 ①?。ㄖ灰顚懻_說法前的序號).
①在活動之前,該網(wǎng)站已有3200人加入;
②在活動期間,每天新加入人數(shù)逐天遞增;
③在活動期間,該網(wǎng)站新加入的總?cè)藬?shù)為2528人.
【考點】VC:條形統(tǒng)計圖.
【分析】(1)觀察表格中的數(shù)據(jù)即可解決問題;
(2)根據(jù)第4天的人數(shù)600,畫出條形圖即可;
(3)根據(jù)題意一一判斷即可;
【解答】解:(1)由題意a=3903+653=4556,b=5156﹣4556=600.
故答案為4556,600.
(2)統(tǒng)計圖如圖所示,
(3)①正確.3353﹣153=3200.故正確.
②錯誤.第4天增加的人數(shù)600<第3天653,故錯誤.
③錯誤.增加的人數(shù)=153+550+653+600+725=2681,故錯誤.
故答案為①
24.如圖,已知等邊△ABC,請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點,在圖中作出一個正六邊形DEFGHI,使點F,點H分別在邊BC和AC上.
【考點】N3:作圖—復(fù)雜作圖;KK:等邊三角形的性質(zhì);MA:三角形的外接圓與外心.
【分析】(1)根據(jù)垂直平分線的作法作出AB,AC的垂直平分線交于點O即為所求;
(2)過D點作DI∥BC交AC于I,分別以D,I為圓心,DI長為半徑作圓弧交AB于E,交AC于H,過E點作EF∥AC交BC于F,過H點作HG∥AB交BC于G,六邊形DEFGHI即為所求正六邊形.
【解答】解:(1)如圖所示:點O即為所求.
(2)如圖所示:六邊形DEFGHI即為所求正六邊形.
25.操作:“如圖1,P是平面直角坐標(biāo)系中一點(x軸上的點除外),過點P作PC⊥x軸于點C,點C繞點P逆時針旋轉(zhuǎn)60°得到點Q.”我們將此由點P得到點Q的操作稱為點的T變換.
(1)點P(a,b)經(jīng)過T變換后得到的點Q的坐標(biāo)為?。╝+b, b)??;若點M經(jīng)過T變換后得到點N(6,﹣),則點M的坐標(biāo)為?。?,﹣2)?。?br />
(2)A是函數(shù)y=x圖象上異于原點O的任意一點,經(jīng)過T變換后得到點B.
①求經(jīng)過點O,點B的直線的函數(shù)表達式;
②如圖2,直線AB交y軸于點D,求△OAB的面積與△OAD的面積之比.
【考點】FI:一次函數(shù)綜合題.
【分析】(1)連接CQ可知△PCQ為等邊三角形,過Q作QD⊥PC,利用等邊三角形的性質(zhì)可求得CD和QD的長,則可求得Q點坐標(biāo);設(shè)出M點的坐標(biāo),利用P、Q坐標(biāo)之間的關(guān)系可得到點M的方程,可求得M點的坐標(biāo);
(2)①可取A(2,),利用T變換可求得B點坐標(biāo),利用待定系數(shù)示可求得直線OB的函數(shù)表達式;②由待定系數(shù)示可求得直線AB的解析式,可求得D點坐標(biāo),則可求得AB、AD的長,可求得△OAB的面積與△OAD的面積之比.
【解答】解:
(1)如圖1,連接CQ,過Q作QD⊥PC于點D,
由旋轉(zhuǎn)的性質(zhì)可得PC=PQ,且∠CPQ=60°,
∴△PCQ為等邊三角形,
∵P(a,b),
∴OC=a,PC=b,
∴CD=PC=b,DQ=PQ=b,
∴Q(a+b, b);
設(shè)M(x,y),則N點坐標(biāo)為(x+y, y),
∵N(6,﹣),
∴,解得,
∴M(9,﹣2);
故答案為:(a+b, b);(9,﹣2);
(2)①∵A是函數(shù)y=x圖象上異于原點O的任意一點,
∴可取A(2,),
∴2+×=,×=,
∴B(,),
設(shè)直線OB的函數(shù)表達式為y=kx,則k=,解得k=,
∴直線OB的函數(shù)表達式為y=x;
②設(shè)直線AB解析式為y=k′x+b,
把A、B坐標(biāo)代入可得,解得,
∴直線AB解析式為y=﹣x+,
∴D(0,),且A(2,),B(,),
∴AB==,AD==,
∴===.
26.某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:
污水處理器型號
A型
B型
處理污水能力(噸/月)
240
180
已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
【考點】C9:一元一次不等式的應(yīng)用;9A:二元一次方程組的應(yīng)用.
【分析】(1)可設(shè)每臺A型污水處理器的價格是x萬元,每臺B型污水處理器的價格是y萬元,根據(jù)等量關(guān)系:①2臺A型、3臺B型污水處理器的總價為44萬元,②1臺A型、4臺B型污水處理器的總價為42萬元,列出方程組求解即可;
(2)由于求至少要支付的錢數(shù),可知購買6臺A型污水處理器、3臺B型污水處理器,費用最少,進而求解即可.
【解答】解:(1)可設(shè)每臺A型污水處理器的價格是x萬元,每臺B型污水處理器的價格是y萬元,依題意有
,
解得.
答:設(shè)每臺A型污水處理器的價格是10萬元,每臺B型污水處理器的價格是8萬元;
(2)購買6臺A型污水處理器、3臺B型污水處理器,費用最少,
10×6+8×3
=60+24
=84(萬元).
答:他們至少要支付84萬元錢.
27.如圖,以原點O為圓心,3為半徑的圓與x軸分別交于A,B兩點(點B在點A的右邊),P是半徑OB上一點,過P且垂直于AB的直線與⊙O分別交于C,D兩點(點C在點D的上方),直線AC,DB交于點E.若AC:CE=1:2.
(1)求點P的坐標(biāo);
(2)求過點A和點E,且頂點在直線CD上的拋物線的函數(shù)表達式.
【考點】MR:圓的綜合題.
【分析】(1)如圖,作EF⊥y軸于F,DC的延長線交EF于H.設(shè)H(m,n),則P(m,0),PA=m+3,PB=3﹣m.首先證明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再證明△DPB∽△DHE,推出===,可得=,求出m即可解決問題;
(2)由題意設(shè)拋物線的解析式為y=a(x+3)(x﹣5),求出E點坐標(biāo)代入即可解決問題;
【解答】解:(1)如圖,作EF⊥y軸于F,DC的延長線交EF于H.設(shè)H(m,n),則P(m,0),PA=m+3,PB=3﹣m.
∵EH∥AP,
∴△ACP∽△ECH,
∴===,
∴CH=2n,EH=2m=6,
∵CD⊥AB,
∴PC=PD=n,
∵PB∥HE,
∴△DPB∽△DHE,
∴===,
∴=,
∴m=1,
∴P(1,0).
(2)由(1)可知,PA=4,HE=8,EF=9,
連接OP,在Rt△OCP中,PC==2,
∴CH=2PC=4,PH=6,
∴E(9,6),
∵拋物線的對稱軸為CD,
∴(﹣3,0)和(5,0)在拋物線上,設(shè)拋物線的解析式為y=a(x+3)(x﹣5),把E(9,6)代入得到a=,
∴拋物線的解析式為y=(x+3)(x﹣5),即y=x2﹣x﹣.
28.如圖,已知矩形ABCD中,AB=4,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關(guān)于直線PC的對稱點E,設(shè)點P的運動時間為t(s).
(1)若m=6,求當(dāng)P,E,B三點在同一直線上時對應(yīng)的t的值.
(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于3,求所有這樣的m的取值范圍.
【考點】LO:四邊形綜合題.
【分析】(1)只要證明△ABD∽△DPC,可得=,由此求出PD即可解決問題;
(2)分兩種情形求出AD的值即可解決問題:①如圖2中,當(dāng)點P與A重合時,點E在BC的下方,點E到BC的距離為3.②如圖3中,當(dāng)點P與A重合時,點E在BC的上方,點E到BC的距離為3;
【解答】解:(1)如圖1中,
∵四邊形ABCD是矩形,
∴∠ADC=∠A=90°,
∴∠DCP+∠CPD=90°,
∵∠CPD+∠ADB=90°,
∴∠ADB=∠PCD,
∵∠A=∠CDP=90°,
∴△ABD∽△DPC,
∴=,
∴=,
∴PD=,
∴t=s時,B、E、D共線.
(2)如圖2中,當(dāng)點P與A重合時,點E在BC的下方,點E到BC的距離為3.
作EQ⊥BC于Q,EM⊥DC于M.則EQ=3,CE=DC=4
易證四邊形EMCQ是矩形,
∴CM=EQ=3,∠M=90°,
∴EM===,
∵∠DAC=∠EDM,∠ADC=∠M,
∴△ADC∽△DME,
=,
∴=,
∴AD=4,
如圖3中,當(dāng)點P與A重合時,點E在BC的上方,點E到BC的距離為3.
作EQ⊥BC于Q,延長QE交AD于M.則EQ=3,CE=DC=4
在Rt△ECQ中,QC=DM==,
由△DME∽△CDA,
∴=,
∴=,
∴AD=,
綜上所述,在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于3,這樣的m的取值范圍≤m<4.
這是一份2020年江蘇省無錫市中考數(shù)學(xué)試卷(含解析版),共31頁。
這是一份2023年江蘇省無錫市中考數(shù)學(xué)試卷-答案與解析試卷,共5頁。
這是一份2023年江蘇省無錫市中考數(shù)學(xué)試卷(含答案解析),共24頁。試卷主要包含了 實數(shù)9的算術(shù)平方根是,5y=3D, 下列運算正確的是, 下列命題等內(nèi)容,歡迎下載使用。
注冊成功