
1.已知,△ABC是等邊三角形,過點(diǎn)C作CD∥AB,且CD=AB,連接BD交AC于點(diǎn)O.
(1)如圖1,求證:AC垂直平分BD;
(2)如圖2,點(diǎn)M在BC的延長(zhǎng)線上,點(diǎn)N在線段CO上,且ND=NM,連接BN.求證:NB=NM.
(1)證明:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠CAB=60°,
∵CD∥AB,且CD=AB,
∴CD=CA=BC,∠ACD=∠ACB=60°,
∴BO=DO,CO⊥BD,
∴AC垂直平分BD;
(2)由(1)知AC垂直平分BD,
∴NB=ND,
∵ND=NM,
∴NB=NM.
2.等腰Rt△ABC,點(diǎn)D為斜邊AB上的中點(diǎn),點(diǎn)E在線段BD上,連結(jié)CD,CE,作AH⊥CE,垂足為H,交CD于點(diǎn)G,AH的延長(zhǎng)線交BC于點(diǎn)F.
(1)求證:△ADG≌△CDE.
(2)若點(diǎn)H恰好為CE的中點(diǎn),求證:∠CGF=∠CFG.
證明:(1)在等腰Rt△ABC中,
∵點(diǎn)D為斜邊AB上的中點(diǎn),
∴CD=AB,CD⊥AB,
∵AD=AB,
∴AD=CD,
∵CD⊥AB,
∴∠ADG=∠CDE=90°,
∵AH⊥CE,
∴∠CGH+∠GCH=90°,
∵∠AGD+∠GAD=90°,
又∵∠AGD=∠CGH,
∴∠GAD=∠GCH,
在△△ADG和△CDE中
∵∠ADG=∠CDE=90°,AD=CD,∠GAD=∠GCH
∴△ADG≌△CDE(ASA),
(2)∵AH⊥CE,點(diǎn)H為CE的中點(diǎn),
∴AC=AE,
∴∠CAH=∠EAH,
∵∠CAH+∠AFC=90°,
∠EAH+∠AGD=90°,
∴∠AFC=∠AGD,
∵∠AGD=∠CGH,
∴∠AFC=∠CGH,
即∠CGF=∠CFG.
3.如圖,在△ABC中,AD⊥BC且BD=DE,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E.
(1)若∠BAE=32°,求∠C的度數(shù);
(2)若AC=6cm,DC=5cm,求△ABC的周長(zhǎng).
解:(1)∵AD⊥BC,BD=DE,EF垂直平分AC
∴AB=AE=EC
∴∠C=∠CAE,
∵∠BAE=32°
∴∠AED=(180°﹣32°)=74°;
∴∠C=∠AED=37°;
(2)由(1)知:AE=EC=AB,
∵BD=DE,
∴AB+BD=EC+DE=DC,
∴△ABC的周長(zhǎng)=AB+BC+AC,
=AB+BD+DC+AC,
=2DC+AC=2×5+6=16(cm).
4.如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥AB交BC于F,交AC于E,過點(diǎn)O作OD⊥BC于D.
(1)求證:∠AOB=90°+∠C;
(2)求證:AE+BF=EF;
(3)若OD=a,CE+CF=2b,請(qǐng)用含a,b的代數(shù)式表示△CEF的面積,S△CEF= ab (直接寫出結(jié)果).
證明:(1)∵OA,OB平分∠BAC和∠ABC,
∴,,
∴∠AOB=180°﹣∠OAB﹣∠OBA====
(2)∵EF∥AB,
∴∠OAB=∠AOE,∠ABO=∠BOF
又∠OAB=∠EAO,∠OBA=∠OBF,
∴∠AOE=∠EAO,∠BOF=∠OBF,
∴AE=OE,BF=OF,
∴EF=OE+OF=AE+BF;
(3)∵點(diǎn)O在∠ACB的平分線上,
∴點(diǎn)O到AC的距離等于OD,
∴S△CEF=(CE+CF)?OD=?2b?a=ab,
故答案為:ab.
5.如圖,在△ABC中,AB=AC,AD為BC邊上的中線,DE⊥AB于點(diǎn)E.
(1)求證:BD?AD=DE?AC.
(2)若AB=13,BC=10,求線段DE的長(zhǎng).
(3)在(2)的條件下,求cs∠BDE的值.
證明:(1)∵AB=AC,BD=CD,
∴AD⊥BC,∠B=∠C,
∵DE⊥AB,
∴∠DEB=∠ADC,
∴△BDE∽△CAD.
∴,
∴BA?AD=DE?CA;
(2)∵AB=AC,BD=CD,
∴AD⊥BC,
在Rt△ADB中,AD===12,
∵?AD?BD=?AB?DE,
∴DE=.
(3)∵∠ADB=∠AED=90°,
∴∠BDE=∠BAD,
∴cs∠BDE=cs∠BAD=.
6.如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)求證:BD=CD.
(2)若弧DE=50°,求∠C的度數(shù).
(3)過點(diǎn)D作DF⊥AB于點(diǎn)F,若BC=8,AF=3BF,求弧BD的長(zhǎng).
(1)證明:如圖,連接AD.
∵AB是圓O的直徑,
∴AD⊥BD.
又∵AB=AC,
∴BD=CD.
(2)解:∵弧DE=50°,
∴∠EOD=50°.
∴∠DAE=∠DOE=25°.
∵由(1)知,AD⊥BD,則∠ADB=90°,
∴∠ABD=90°﹣25°=65°.
∵AB=AC,
∴∠C=∠ABD=65°.
(3)∵BC=8,BD=CD,
∴BD=4.
設(shè)半徑OD=x.則AB=2x.
由AF=3BF可得AF=AB=x,BF=AB=x,
∵AD⊥BD,DF⊥AB,
∴BD2=BF?AB,即42=x?2x.
解得x=4.
∴OB=OD=BD=4,
∴△OBD是等邊三角形,
∴∠BOD=60°.
∴弧BD的長(zhǎng)是:=.
7.閱讀下面材料:
數(shù)學(xué)課上,老師給出了如下問題:
如圖,AD為△ABC中線,點(diǎn)E在AC上,BE交AD于點(diǎn)F,AE=EF.求證:AC=BF.
經(jīng)過討論,同學(xué)們得到以下兩種思路:
完成下面問題:
(1)①思路一的輔助線的作法是: 延長(zhǎng)AD至點(diǎn)G,使DG=AD,連接BG ;
②思路二的輔助線的作法是: 作BG=BF交AD的延長(zhǎng)線于點(diǎn)G .
(2)請(qǐng)你給出一種不同于以上兩種思路的證明方法(要求:只寫出輔助線的作法,并畫出相應(yīng)的圖形,不需要寫出證明過程).
解:(1)①延長(zhǎng)AD至點(diǎn)G,使DG=AD,連接BG,如圖①,理由如下:
∵AD為△ABC中線,
∴BD=CD,
在△ADC和△GDB中,,
∴△ADC≌△GDB(SAS),
∴AC=BG,
∵AE=EF,
∴∠CAD=∠EFA,
∵∠BFG=∠G,∠G=∠CAD,
∴∠G=∠BFG,
∴BG=BF,
∴AC=BF.
故答案為:延長(zhǎng)AD至點(diǎn)G,使DG=AD,連接BG;
②作BG=BF交AD的延長(zhǎng)線于點(diǎn)G,如圖②.理由如下:
∵BG=BF,
∴∠G=∠BFG,
∵AE=EF,
∴∠EAF=∠EFA,
∵∠EFA=∠BFG,
∴∠G=∠EAF,
在△ADC和△GDB中,,
∴△ADC≌△GDB(AAS),
∴AC=BG,
∴AC=BF;
故答案為:作BG=BF交AD的延長(zhǎng)線于點(diǎn)G;
(2)作BG∥AC交AD的延長(zhǎng)線于G,如圖③所示:
則∠G=∠CAD,
∵AD為△ABC中線,
∴BD=CD,
在△ADC和△GDB中,,
∴△ADC≌△GDB(AAS),
∴AC=BG,
∵AE=EF,
∴∠CAD=∠EFA,
∵∠BFG=∠G,∠G=∠CAD,
∴∠G=∠BFG,
∴BG=BF,
∴AC=BF.
8.如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE∥OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)D為AB中點(diǎn),求OE的長(zhǎng);
(3)如圖2,若點(diǎn)P(x,﹣2x+4)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動(dòng)點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).
解:(1)∵n2﹣8n+16+|n﹣2m|=0,
∴(n﹣4)2+|n﹣2m|=0,
∵(n﹣4)2≥0,|n﹣2m|≥0,
∴(n﹣4)2=0,|n﹣2m|=0,
∴m=2,n=4,
∴點(diǎn)A為(2,0),點(diǎn)B為(0,4);
(2)延長(zhǎng)DE交x軸于點(diǎn)F,延長(zhǎng)FD到點(diǎn)G,使得DG=DF,連接BG,
設(shè)OE=x,
∵OC平分∠AOB,
∴∠BOC=∠AOC=45°,
∵DE∥OC,
∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,
∴OE=OF=x,
在△ADF和△BDG中,
,
∴△ADF≌△BDG(SAS),
∴BG=AF=2+x,∠G=∠AFE=45°,
∴∠G=∠BEG=45°,
∴BG=BE=4﹣x,
∴4﹣x=2+x,解得:x=1,
∴OE=1;
(3)如圖2,分別過點(diǎn)F、P作FM⊥y軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,設(shè)點(diǎn)E為(0,m),
∵點(diǎn)P的坐標(biāo)為(x,﹣2x+4),
∴PN=x,EN=m+2x﹣4,
∵∠PEF=90°,
∴∠PEN+∠FEM=90°,
∵FM⊥y軸,
∴∠MFE+∠FEM=90°,
∴∠PEN=∠MFE,
在△EFM和△PEN中,
,
∴△EFM≌△PEN(AAS),
∴ME=NP=x,F(xiàn)M=EN=m+2x﹣4,
∴點(diǎn)F為(m+2x﹣4,m+x),
∵F點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相等,
∴m+2x﹣4=m+x,
解得:x=4,
∴點(diǎn)P為(4,﹣4).
9.在等邊△ABC中,線段AM為BC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)若點(diǎn)D在線段AM上時(shí)(如圖1),則AD = BE(填“>”、“<”或“=”),∠CAM= 30 度;
(2)設(shè)直線BE與直線AM的交點(diǎn)為O.
①當(dāng)動(dòng)點(diǎn)D在線段AM的延長(zhǎng)線上時(shí)(如圖2),試判斷AD與BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),試判斷∠AOB是否為定值?若是,請(qǐng)直接寫出∠AOB的度數(shù);若不是,請(qǐng)說明理由.
解:(1))∵△ABC與△DEC都是等邊三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCB=∠DCB+∠BCE
∴∠ACD=∠BCE.
在△ADC和△BEC中
,
∴△ACD≌△BCE(SAS),
∴AD=BE;
∵△ABC是等邊三角形,
∴∠BAC=60°.
∵線段AM為BC邊上的中線
∴∠CAM=∠BAC,
∴∠CAM=30°.
故答案為:=,30;
(2)①AD=BE,
理由如下:∵△ABC和△CDE都是等邊三角形
∴AB=BC,DC=EC,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS)
∴AD=BE.
②∠AOB是定值,∠AOB=60°,
理由如下:
當(dāng)點(diǎn)D在線段AM上時(shí),如圖1,由①知△ACD≌△BCE,則∠CBE=∠CAD=30°,
又∠ABC=60°,
∴∠CBE+∠ABC=60°+30°=90°,
∵△ABC是等邊三角形,線段AM為BC邊上的中線
∴AM平分∠BAC,即,
∴∠BOA=90°﹣30°=60°.
當(dāng)點(diǎn)D在線段AM的延長(zhǎng)線上時(shí),如圖2,
∵△ABC與△DEC都是等邊三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACB+∠DCB=∠DCB+∠DCE
∴∠ACD=∠BCE
在△ACD和△BCE中
,
∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD=30°,
同理可得:∠BAM=30°,
∴∠BOA=90°﹣30°=60°.
10.?dāng)?shù)學(xué)課上,王老師出示了如下框中的題目.小明與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況?探索結(jié)論:在等邊三角形ABC中,當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),點(diǎn)D在CB點(diǎn)延長(zhǎng)線上,且ED=EC;如圖1,確定線段AE與DB的大小關(guān)系.請(qǐng)你直接寫出結(jié)論 AE=DB ;
(2)特例啟發(fā),解答題目
王老師給出的題目中,AE與DB的大小關(guān)系是: AE=DB .理由如下:
如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在△ABC中,AB=BC=AC=1;點(diǎn)E在AB的延長(zhǎng)線上,AE=2;點(diǎn)D在CB的延長(zhǎng)線上,ED=EC,如圖3,請(qǐng)直接寫CD的長(zhǎng) 1或3 .
解:(1)如圖1,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,
∵△ABC為等邊三角形,
∴∠AFE=∠ACB=∠ABC=60°,△AEF為等邊三角形,
∴∠EFC=∠EBD=120°,EF=AE,
∵ED=EC,
∴∠EDB=∠ECB,∠ECB=∠FEC,
∴∠EDB=∠FEC,
在△BDE和△FEC中,
,
∴△BDE≌△FEC(AAS),
∴BD=EF,
∴AE=BD,
故答案為:=;
(2)解答過程如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,
∵△ABC為等邊三角形,
∴∠AFE=∠ACB=∠ABC=60°,△AEF為等邊三角形,
∴∠EFC=∠EBD=120°,EF=AE,
∵ED=EC,
∴∠EDB=∠ECB,∠ECB=∠FEC,
∴∠EDB=∠FEC,
在△BDE和△FEC中
,
∴△BDE≌△FEC(AAS),
∴BD=EF,
∴AE=BD.
故答案為:AE=DB.
(3)解:分為四種情況:
如圖3,
∵AB=AC=1,AE=2,
∴B是AE的中點(diǎn),
∵△ABC是等邊三角形,
∴AB=AC=BC=1,△ACE是直角三角形(根據(jù)直角三角形斜邊的中線等于斜邊的一半),
∴∠ACE=90°,∠AEC=30°,
∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,
∴∠DEB=180°﹣30°﹣60°=90°,
即△DEB是直角三角形.
∴BD=2BE=2(30°所對(duì)的直角邊等于斜邊的一半),
即CD=1+2=3.
如圖4,
過A作AN⊥BC于N,過E作EM⊥CD于M,
∵等邊三角形ABC,EC=ED,
∴BN=CN=BC=,CM=MD=CD,AN∥EM,
∴△BAN∽△BEM,
∴,
∵△ABC邊長(zhǎng)是1,AE=2,
∴,
∴MN=1,
∴CM=MN﹣CN=1﹣=,
∴CD=2CM=1;
如圖5,
∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否則△EDC不符合三角形內(nèi)角和定理,
∴此時(shí)不存在EC=ED;
如圖6,
∵∠EDC<∠ABC,∠ECB>∠ACB,
又∵∠ABC=∠ACB=60°,
∴∠ECD>∠EDC,
即此時(shí)ED≠EC,
∴此時(shí)情況不存在,
答:CD的長(zhǎng)是3或1.
故答案為:1或3.
11.定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的兩倍,則稱這樣的三角形為“倍角三角形”.
(1)如圖1,△ABC中,AB=AC,∠A=36°,求證:△ABC是倍角三角形;
(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=,求△ABC面積;
(3)如圖2,△ABC的外角平分線AD與CB的延長(zhǎng)線相交于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使得AE=AB,若AB+AC=BD,請(qǐng)你找出圖中的倍角三角形,并進(jìn)行證明.
(1)證明:∵AB=AC,
∴∠B=∠C,
∵∠A+∠B+∠C=180°,∠A=36°,
∴∠B=∠C=72°,
∴∠A=2∠C,
即△ABC是倍角三角形,
(2)解:∵∠A>∠B>∠C,∠B=30°,
①當(dāng)∠B=2∠C,得∠C=15°,
過C作CH⊥直線AB,垂足為H,
可得∠CAH=45°,
∴AH=CH=AC=4.
∴BH=,
∴AB=BH﹣AH=﹣4,
∴S=.
②當(dāng)∠A=2∠B或∠A=2∠C時(shí),與∠A>∠B>∠C矛盾,故不存在.
綜上所述,△ABC面積為.
(3)∵AD平分∠BAE,
∴∠BAD=∠EAD,
∵AB=AE,AD=AD,
∴△ABD≌△AED(SAS),
∴∠ADE=∠ADB,BD=DE.
又∵AB+AC=BD,
∴AE+AC=BD,即CE=BD.
∴CE=DE.
∴∠C=∠BDE=2∠ADC.
∴△ADC是倍角三角形.
12.如圖,在平面直角坐標(biāo)系中,OA=OB,AC=CD,已知兩點(diǎn)A(4,0),C(0,7),點(diǎn)D在第一象限內(nèi),∠DCA=90°,點(diǎn)B在線段OC上,AB的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)M,AC與BD交于點(diǎn)N.
(1)點(diǎn)B的坐標(biāo)為: (0,4) ;
(2)求點(diǎn)D的坐標(biāo);
(3)求證:CM=CN.
解:(1)∵A(4,0),
∴OA=OB=4,
∴B(0,4),
故答案為:(0,4).
(2)∵C(0,7),
∴OC=7,
過點(diǎn)D作DE⊥y軸,垂足為E,
∴∠DEC=∠AOC=90°,
∵∠DCA=90°,
∴∠ECD+∠BCA=∠ECD+∠EDC=90°
∴∠BCA=∠EDC,
∴△DEC≌△COA(AAS),
∴DE=OC=7,EC=OA=4,
∴OE=OC+EC=11,
∴D(7,11);
(3)證明:∵BE=OE﹣OB=11﹣4=7
∴BE=DE,
∴△DBE是等腰直角三角形,
∴∠DBE=45°,
∵OA=OB,
∴∠OBA=45°,
∴∠DBA=90°,
∴∠BAN+∠ANB=90°,
∵∠DCA=90°,
∴∠CDN+∠DNC=90°,
∵∠DNC=∠ANB,
∴∠CDN=∠BAN,
∵∠DCA=90°,
∴∠ACM=∠DCN=90°,
∴△DCN≌△ACM(ASA),
∴CM=CN.
13.如圖,在△ABC中,BD⊥AC,垂足為C,且∠A<∠C,點(diǎn)E是一動(dòng)點(diǎn),其在BC上移動(dòng),連接DE,并過點(diǎn)E作EF⊥DE,點(diǎn)F在AB的延長(zhǎng)線上,連接DF交BC于點(diǎn)G.
(1)請(qǐng)同學(xué)們根據(jù)以上提示,在上圖基礎(chǔ)上補(bǔ)全示意圖.
(2)當(dāng)△ABD與△FDE全等,且AD=FE,∠A=30°,∠AFD=40°,求∠C的度數(shù).
解:(1)補(bǔ)全示意圖如圖所示,
(2)∵DE⊥EF,BD⊥AC,
∴∠DEF=∠ADB=90°.
∵△ABD與△DEF全等,
∴AB=DF,
又∵AD=FE,
∴∠ABD=∠FDE,
∴BD=DE.
在Rt△ABD中,∠ABD=90°﹣∠A=60°.
∴∠FDE=60°.
∵∠ABD=∠BDF+∠AFD,
∵∠AFD=40°,
∴∠BDF=20°.
∴∠BDE=∠BDF+∠FDE=20°+60°=80°.
∵BD=DE,
∴∠DBE=∠BED=(180°﹣∠BDE)=50°.
在Rt△BDC中,∠C=90°﹣∠DBE=90°﹣50°=40°.
14.如圖.CP是等邊△ABC的外角∠ACE的平分線,點(diǎn)D在邊BC上,以D為頂點(diǎn),DA為一條邊作∠ADF=60°,另一邊交射線CP于F.
(1)求證.AD=FD;
(2)若AB=2,BD=x,DF=y(tǒng),求y關(guān)于x的函數(shù)解析式;
(3)聯(lián)結(jié)AF,當(dāng)△ADF的面積為時(shí),求BD的長(zhǎng).
證明:(1)如圖1,連接AF,
∵∠ACB=60°,
∴∠ACE=120°,
∵CP平分∠ACE,
∴∠ACP=∠PCE=60°,
∴∠ADF=∠ACP=60°,
∴A、D、C、F四點(diǎn)共圓,
∴∠AFD=∠ACB=60°,
∴∠ADF=∠AFD=60°,
∴∠DAF=60°,
∴△ADF是等邊三角形,
∴AD=FD;
(2)如圖2,過點(diǎn)A作AH⊥BC,
∵△ABC是等邊三角形,AH⊥BC,AB=2,
∴BH=1,AH=BH=,
∴HD=BD﹣BH=x﹣1,
∵DF==,
∴y=
(3)∵△ADF是等邊三角形,且△ADF的面積為,
∴DF2=,
∴DF2==x2﹣2x+4
∴x=
∴BD=或
15.如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),以D為頂點(diǎn)作一個(gè)120°的角,角的兩邊分別交直線AB、直線AC于M、N兩點(diǎn).以點(diǎn)D為中心旋轉(zhuǎn)∠MDN(∠MDN的度數(shù)不變),當(dāng)DM與AB垂直時(shí)(如圖①所示),易證BM+CN=BD.
(1)如圖②,當(dāng)DM與AB不垂直,點(diǎn)M在邊AB上,點(diǎn)N在邊AC上時(shí),BM+CN=BD是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(2)如圖③,當(dāng)DM與AB不垂直,點(diǎn)M在邊AB上,點(diǎn)N在邊AC的延長(zhǎng)線上時(shí),BM+CN=BD是否仍然成立?若不成立,請(qǐng)寫出BM,CN,BD之間的數(shù)量關(guān)系,不用證明.
解:(1)結(jié)論BM+CN=BD成立,理由如下:
如圖②,過點(diǎn)D作DE∥AC交AB于E,
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,
∵DE∥AC,
∴∠BED=∠A=60°,∠BDE=∠C=60°,
∴∠B=∠BED=∠BDE=60°,
∴△BDE是等邊三角形,∠EDC=120°,
∴BD=BE=DE,∠EDN+∠CDN=120°,
∵∠EDM+∠EDN=∠MDN=120°,
∴∠CDN=∠EDM,
∵D是BC邊的中點(diǎn),
∴DE=BD=CD,
在△CDN和△EDM中,
,
∴△CDN≌△EDM(ASA),
∴CN=EM,
∴BD=BE=BM+EM=BM+CN;
(2)上述結(jié)論不成立,BM,CN,BD之間的數(shù)量關(guān)系為:BM﹣CN=BD;理由如下:
如圖③,過點(diǎn)D作DE∥AC交AB于E,
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,
∴∠NCD=120°,
∵DE∥AC,
∴∠BED=∠A=60°,∠BDE=∠C=60°,
∴∠B=∠BED=∠BDE=60°,
∴△BDE是等邊三角形,∠MED=∠EDC=120°,
∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,
∵∠CDN+∠CDM=∠MDN=120°,
∴∠CDN=∠EDM,
∵D是BC邊的中點(diǎn),
∴DE=BD=CD,
在△CDN和△EDM中,
,
∴△CDN≌△EDM(ASA),
∴CN=EM,
∴BD=BE=BM﹣EM=BM﹣CN,
∴BM﹣CN=BD.
思路一如圖①,添加輔助線后依據(jù)SAS可證得△ADC≌△GDB,再利用AE=EF可以進(jìn)一步證得∠G=∠FAE=∠AFE=∠BFG,從而證明結(jié)論.
思路二如圖②,添加輔助線后并利用AE=EF可證得∠G=∠BFG=∠AFE=∠FAE,再依據(jù)AAS可以進(jìn)一步證得△ADC≌△GDB,從而證明結(jié)論.
這是一份中考數(shù)學(xué)壓軸題專項(xiàng)訓(xùn)練03圓含解析,共22頁。試卷主要包含了【解析】證明,【解析】和是所對(duì)圓周角,,【解析】證明,,【解析】解等內(nèi)容,歡迎下載使用。
這是一份中考數(shù)學(xué)壓軸題專項(xiàng)訓(xùn)練06規(guī)律問題含解析,共15頁。試卷主要包含了觀察下列等式,閱讀材料,材料, 閱讀下列解題過程,先化簡(jiǎn),再求值等內(nèi)容,歡迎下載使用。
這是一份中考數(shù)學(xué)壓軸題專項(xiàng)訓(xùn)練09動(dòng)態(tài)幾何含解析,共35頁。試卷主要包含了定義,綜合實(shí)踐等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功