第3講 函數(shù)的奇偶性與周期性

[考綱解讀] 1.了解函數(shù)奇偶性的含義.
2.會(huì)運(yùn)用基本初等函數(shù)的圖象分析函數(shù)的奇偶性.(重點(diǎn))
3.了解函數(shù)周期性、最小正周期的含義,會(huì)判斷、應(yīng)用簡(jiǎn)單函數(shù)的周期性.(重點(diǎn))
[考向預(yù)測(cè)] 從近三年高考情況來看,函數(shù)的奇偶性與周期性是高考的一個(gè)熱點(diǎn).預(yù)測(cè)2021年高考會(huì)側(cè)重以下三點(diǎn):①函數(shù)奇偶性的判斷及應(yīng)用;②函數(shù)周期性的判斷及應(yīng)用;③綜合利用函數(shù)奇偶性、周期性和單調(diào)性求參數(shù)的值或解不等式.


1.函數(shù)的奇偶性

奇偶性
定義
圖象特點(diǎn)
偶函數(shù)
一般地,如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)
關(guān)于y軸對(duì)稱
奇函數(shù)
一般地,如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)
關(guān)于原點(diǎn)對(duì)稱

2.周期性
(1)周期函數(shù):對(duì)于函數(shù)y=f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時(shí),都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個(gè)函數(shù)的周期.
(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小正數(shù)就叫做f(x)的最小正周期.

1.概念辨析
(1)“a+b=0”是“函數(shù)f(x)在區(qū)間[a,b](a≠b)上具有奇偶性”的必要條件.(  )
(2)若函數(shù)f(x)是奇函數(shù),則必有f(0)=0.(  )
(3)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=a對(duì)稱.(  )
(4)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(b,0)中心對(duì)稱.(  )
(5)已知函數(shù)y=f(x)是定義在R上的偶函數(shù),若在(-∞,0)上是減函數(shù),則在(0,+∞)上是增函數(shù).(  )
(6)若T為y=f(x)的一個(gè)周期,那么nT(n∈Z)也是函數(shù)f(x)的周期.(  )
答案 (1)√ (2)× (3)√ (4)√ (5)√ (6)×
                    

2.小題熱身
(1)下列函數(shù)中為奇函數(shù)的是(  )
A.y=x2sinx B.y=x2cosx
C.y=|ln x| D.y=2-x
答案 A
解析 A是奇函數(shù),B是偶函數(shù),C,D是非奇非偶函數(shù).
(2)若f(x)是R上周期為2的函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)=________.
答案?。?
解析 因?yàn)閒(x)是R上周期為2的函數(shù),
所以f(3)=f(1)=1,f(4)=f(2)=2,
所以f(3)-f(4)=1-2=-1.
(3)設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+1,則f(-2)+f(0)=________.
答案 -5
解析 因?yàn)閒(x)是定義在R上的奇函數(shù),
所以f(-2)=-f(2)=-(22+1)=-5,f(0)=0,
所以f(-2)+f(0)=-5.
(4)偶函數(shù)y=f(x)的圖象關(guān)于直線x=2對(duì)稱,f(3)=3,則f(-1)=________.
答案 3
解析 因?yàn)楹瘮?shù)y=f(x)是偶函數(shù),所以f(-1)=f(1),
因?yàn)楹瘮?shù)y=f(x)的圖象關(guān)于直線x=2對(duì)稱,
所以f(1)=f(3)=3.綜上可知,f(-1)=3.

(5)設(shè)奇函數(shù)f(x)的定義域?yàn)閇-5,5],若當(dāng)x∈[0,5]時(shí),f(x)的圖象如圖所示,則不等式f(x)<0的解集為________.
答案 (-2,0)∪(2,5]



解析 因?yàn)楹瘮?shù)f(x)是奇函數(shù),所以其圖象關(guān)于原點(diǎn)中心對(duì)稱,作出其圖如右,
觀察圖象可知,不等式f(x)<0的解集為(-2,0)∪(2,5].



題型 一 函數(shù)的奇偶性 
                    


角度1 判斷函數(shù)的奇偶性
1.(2020·成都市高三階段考試)已知y=f(x)是定義在R上的奇函數(shù),則下列函數(shù)中為奇函數(shù)的是(  )
①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.
A.①③ B.②③
C.①④ D.②④
答案 D
解析 因?yàn)閥=f(x)是定義在R上的奇函數(shù),所以f(-x)=-f(x),由f(|-x|)=f(|x|),知①是偶函數(shù);由f[-(-x)]=f(x)=-f(-x),知②是奇函數(shù);由y=f(x)是定義在R上的奇函數(shù),且y=x是定義在R上的奇函數(shù),奇×奇=偶,知③是偶函數(shù);由f(-x)+(-x)=-[f(x)+x],知④是奇函數(shù).
2.判斷下列函數(shù)的奇偶性:
(1)f(x)=+;
(2)f(x)=(1-x) ;
(3)f(x)=;
(4)f(x)=
解 (1)由得x2=3,解得x=±,
即函數(shù)f(x)的定義域?yàn)閧-,},
∴f(x)=+=0.
∴f(-x)=-f(x)且f(-x)=f(x),
∴函數(shù)f(x)既是奇函數(shù)又是偶函數(shù).
(2)由≥0得-1≤x

英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部