【學(xué)習(xí)目標(biāo)】
1.理解并掌握矩形的判定方法;
2.會(huì)用矩形的判定定理進(jìn)行有關(guān)的論證或計(jì)算.
【知識(shí)梳理】
1.定義法: 叫做矩形.
2.矩形相對于一般平行四邊形來講,特殊在“對角線”和“角”上.
我們可以從“對角線”和“角”兩方面得到矩形的判定定理:
矩形的判定定理(1):________________________________________________________
矩形的判定定理(2):________________________________________________________
3.獨(dú)立證明矩形的判定定理(1),(2).
(1)對角線相等的平行四邊形是矩形.
已知: 求證:
證明
A
B
C
D
(2)有三個(gè)角是直角的四邊形是矩形.
已知: 求證:
證明
【典型例題】
知識(shí)點(diǎn)一 對角線相等的平行四邊形是矩形.
1題圖
1.如果,是斜邊上的中線,延長到點(diǎn),使,連接、.四邊形是矩形嗎?請說明理由.
1題圖
知識(shí)點(diǎn)二 有三個(gè)角是直角的四邊形是矩形.
2.如圖,在?ABCD中,AE⊥BC,CF⊥AD,E,F分別為垂足.求證:四邊形AECF是矩形.
2題圖
2題圖
【鞏固訓(xùn)練】
1.已知平行四邊形ABCD,下列條件:①;②;③;④平分,其中能說明平行四邊形ABCD是矩形的是( )
A.① B.② C.③ D.④
2.如圖,?ABCD的對角線AC,BD交于點(diǎn)O,順次連接?ABCD各邊中點(diǎn)得到一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①AC⊥BD;②C△ABO=C△CBO;③∠DAO=∠CBO;④∠DAO=∠BAO,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
3.如圖,在矩形COED中,點(diǎn)D的坐標(biāo)是(1,3),則CE的長是( )
A.3B. C. D.4
4題圖
3題圖
4.如圖,在四邊形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,點(diǎn)P從點(diǎn)D出發(fā),以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)M從點(diǎn)B同時(shí)出發(fā),以相同的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),兩個(gè)動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(單位:s),下列結(jié)論正確的是( )
A.當(dāng)時(shí),四邊形ABMP為矩形 B.當(dāng)時(shí),四邊形CDPM為平行四邊形
3題圖
C.當(dāng)時(shí), D.當(dāng)時(shí),或6s
2題圖
2題圖
4題圖
5.已知:如圖,四邊形是菱形,連接對角線,過點(diǎn)作交的延長線于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),連接.求證:四邊形是矩形.
6題圖
6.如圖,在平行四邊形ABCD中,點(diǎn)E是邊AB的中點(diǎn),連接CE并延長CE交DA的延長線于點(diǎn)F,連接AC,BF.
(1)求證:四邊形AFBC是平行四邊形;
(2)若∠D=50°,則當(dāng)∠AEC的度數(shù)為 °時(shí),四邊形AFBC是矩形.
6.2矩形的性質(zhì)與判斷(2)
【知識(shí)梳理】
1.有一個(gè)角是直角的平行四邊形
2.對角線相等的平行四邊形是矩形
有三個(gè)角是直角的四邊形是矩形
【鞏固練習(xí)】
1.B 2.C 3.C 4.D
5. 解:(證明:四邊形為菱形,
∴,
∴,
∵,,
,,
在和中,
,
,
,
∴四邊形為平?四邊形,

∴為矩形.
6(1)證明:∵四邊形ABCD是平行四邊形,
∴DA∥CB,
∴∠EAF=∠EBC,
∵點(diǎn)E是邊AB的中點(diǎn),
∴AE=BE,
在△AEF和△BEC中,
∠EAF=∠ECB
AE=BE
∠AEF=∠BEC,
∴△AEF≌△BEC(ASA),
∴EF=EC,
又∵AE=BE,
∴四邊形AFBC是平行四邊形;
(2)解:當(dāng)∠AEC的度數(shù)為100度時(shí),四邊形AFBC是矩形,
理由:∵四邊形AFBC是矩形,
∴AB=CF,
∴EC=EB,
∴∠ECB=∠EBC,
∵四邊形ABCD是平行四邊形,∠D=50°,
∴∠D=∠EBC=50°,
∴∠ECB=50°,
∴∠AEC=∠ECB+∠EBC=50°+50°=100°,
故答案為:100.

相關(guān)學(xué)案

魯教版(五四學(xué)制)(2024)八年級下冊第九章 圖形的相似1 成比例線段導(dǎo)學(xué)案:

這是一份魯教版(五四學(xué)制)(2024)八年級下冊第九章 圖形的相似1 成比例線段導(dǎo)學(xué)案,共3頁。學(xué)案主要包含了學(xué)習(xí)目標(biāo),知識(shí)梳理,典型例題,鞏固訓(xùn)練,拓展延伸等內(nèi)容,歡迎下載使用。

魯教版(五四學(xué)制)(2024)八年級下冊2 矩形的性質(zhì)與判定導(dǎo)學(xué)案及答案:

這是一份魯教版(五四學(xué)制)(2024)八年級下冊2 矩形的性質(zhì)與判定導(dǎo)學(xué)案及答案,共4頁。學(xué)案主要包含了學(xué)習(xí)目標(biāo),知識(shí)梳理,典型例題,鞏固訓(xùn)練等內(nèi)容,歡迎下載使用。

初中數(shù)學(xué)魯教版(五四學(xué)制)(2024)八年級下冊1 菱形的性質(zhì)與判定導(dǎo)學(xué)案:

這是一份初中數(shù)學(xué)魯教版(五四學(xué)制)(2024)八年級下冊1 菱形的性質(zhì)與判定導(dǎo)學(xué)案,共5頁。學(xué)案主要包含了學(xué)習(xí)目標(biāo),知識(shí)梳理,典型例題,鞏固訓(xùn)練等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)學(xué)案 更多

初中數(shù)學(xué)魯教版 (五四制)八年級下冊2 矩形的性質(zhì)與判定學(xué)案

初中數(shù)學(xué)魯教版 (五四制)八年級下冊2 矩形的性質(zhì)與判定學(xué)案

初中數(shù)學(xué)魯教版 (五四制)八年級下冊2 矩形的性質(zhì)與判定學(xué)案設(shè)計(jì)

初中數(shù)學(xué)魯教版 (五四制)八年級下冊2 矩形的性質(zhì)與判定學(xué)案設(shè)計(jì)

魯教版 (五四制)八年級下冊1 菱形的性質(zhì)與判定導(dǎo)學(xué)案

魯教版 (五四制)八年級下冊1 菱形的性質(zhì)與判定導(dǎo)學(xué)案

魯教版 (五四制)八年級下冊1 菱形的性質(zhì)與判定學(xué)案

魯教版 (五四制)八年級下冊1 菱形的性質(zhì)與判定學(xué)案

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
初中數(shù)學(xué)魯教版(五四學(xué)制)(2024)八年級下冊電子課本

2 矩形的性質(zhì)與判定

版本: 魯教版(五四學(xué)制)(2024)

年級: 八年級下冊

切換課文
  • 課件
  • 教案
  • 學(xué)案
  • 更多
所有DOC左下方推薦
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號(hào)注冊
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號(hào)注冊
微信注冊

注冊成功

返回
頂部