一、選擇題(本大題共12小題,每小題3分,共36分)
1. 企業(yè)標(biāo)志反映了思想、理念等企業(yè)文化,在設(shè)計(jì)上特別注重對(duì)稱美,下列企業(yè)標(biāo)志圖為中心對(duì)稱圖形的是( )
A. B.
C. D.
【答案】C
【解析】A.不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;
B.不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;
C.是中心對(duì)稱圖形,故此選項(xiàng)符合題意;
D.不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;故選C.
2. 用配方法解一元二次方程,配方后得到的方程是( )
A. B.
C. D.
【答案】D
【解析】∵,
∴,
∴,
∴,
故選D.
3. 將拋物線先向右平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,得到的新的拋物線的解析式為( )
A. B.
C. D.
【答案】D
【解析】拋物線先向右平移個(gè)單位長(zhǎng)度,得:,再向上平移個(gè)單位長(zhǎng)度,得:.
故選:D.
4. 如圖,是直徑,,則( )
A. B. C. D.
【答案】A
【解析】∵是的直徑,∴,
∵,
∴,
∵,∴;
故選:A.
5. 如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,旋轉(zhuǎn)角為,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,若,則旋轉(zhuǎn)角的度數(shù)為( )
A. B. C. D.
【答案】C
【解析】如圖所示,設(shè)交于點(diǎn),
∵,
∴,
在中,,
∵是旋轉(zhuǎn)得到,
∴,,
∴,
∴,
故選:.
6. 如圖,二次函數(shù)的圖象與x軸交于,兩點(diǎn),下列說(shuō)法正確的是( )

A. 拋物線的對(duì)稱軸為直線
B. 拋物線的頂點(diǎn)坐標(biāo)為
C. ,兩點(diǎn)之間距離為
D. 當(dāng)時(shí),的值隨值的增大而增大
【答案】C
【解析】∵二次函數(shù)的圖象與x軸交于,兩點(diǎn),


∴二次函數(shù)解析式為,對(duì)稱軸為直線,頂點(diǎn)坐標(biāo)為,故A,B選項(xiàng)不正確,不符合題意;
∵,拋物線開(kāi)口向上,當(dāng)時(shí),的值隨值的增大而減小,故D選項(xiàng)不正確,不符合題意;
當(dāng)時(shí),

∴,
∴,故C選項(xiàng)正確,符合題意;
故選:C.
7. 如圖,切于點(diǎn),連結(jié)交于點(diǎn)交于點(diǎn),連接,若,則的度數(shù)為( )
A. B. C. D.
【答案】D
【解析】如圖,連接,

∵切于點(diǎn),
∴,
∵, ,
∴,
∴,
∴;
故選:D.
8. 一個(gè)球從地面豎直向上彈起時(shí)的速度為10米/秒,經(jīng)過(guò)(秒)時(shí)球距離地面的高度(米)適用公式,那么球彈起后又回到地面所花的時(shí)間(秒)是( )
A. 5B. 10C. 1D. 2
【答案】D
【解析】球彈起后又回到地面時(shí),即,
解得(不合題意,舍去),,
∴球彈起后又回到地面所花的時(shí)間(秒)是2,
故選:D
9. 如圖,正六邊形內(nèi)接于,點(diǎn)在弧上,點(diǎn)是弧的中點(diǎn),則的度數(shù)為( )
A. B. C. D.
【答案】B
【解析】如圖所示,連接,
∵正六邊形內(nèi)接于,
∴∠COD= =60°,
∵點(diǎn)是弧的中點(diǎn),



故選:B.
10. 如圖,把以點(diǎn)A為中心逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)B,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D,E,且點(diǎn)E在的延長(zhǎng)線上,連接,則下列結(jié)論一定正確的是( )

A. B.
C. D.
【答案】A
【解析】根據(jù)題意,由旋轉(zhuǎn)的性質(zhì),
可得,,,
無(wú)法證明,,故B選項(xiàng)和D選項(xiàng)不符合題意,
,故C選項(xiàng)不符合題意,
,故A選項(xiàng)符合題意,
故選:A.
11. 如圖,與相切于點(diǎn)交于點(diǎn),點(diǎn)在上,且.若,則的長(zhǎng)為( )
A. 3B. 3.5C. D. 4
【答案】C
【解析】連接,
與相切于點(diǎn),
,
,,,
,

在中,,,
,
的面積的面積的面積,
,
,
,
,
故選:C
12. 規(guī)定:如果兩個(gè)函數(shù)的圖象關(guān)于軸對(duì)稱,那么稱這兩個(gè)函數(shù)互為“函數(shù)”.例如:函數(shù)與互為“函數(shù)”.若函數(shù)的圖象與軸只有一個(gè)交點(diǎn),則它的“函數(shù)”圖象與軸的交點(diǎn)坐標(biāo)為( )
A. B.
C. 或D. 或
【答案】D
【解析】①當(dāng)時(shí),函數(shù)的解析式為,
此時(shí)函數(shù)的圖象與x軸只有一個(gè)交點(diǎn)成立,
當(dāng)時(shí),可得,解得,
與x軸的交點(diǎn)坐標(biāo)為,
根據(jù)題意可得,它的“Y函數(shù)”圖象與x軸的交點(diǎn)坐標(biāo)為;
②當(dāng)時(shí),
函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
,即,解得,
函數(shù)的解析式為,
當(dāng)時(shí),得,解得,
根據(jù)題意可得,它的“Y函數(shù)”圖象與x軸的交點(diǎn)坐標(biāo)為,
綜上所述,它的“函數(shù)”圖象與x軸的交點(diǎn)坐標(biāo)為或,故選:D.
二、填空題(共4小題,每小題3分,共12分)
13. 在平面直角坐標(biāo)系中,若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則的值是_____.
【答案】1
【解析】∵點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∴.
故答案為:1.
14. 若關(guān)于x的一元二次方程兩根為、,且,則m的值為_(kāi)_____.
【答案】12
【解析】∵關(guān)于x的一元二次方程兩根為、,
∴,
∵,∴,∴,∴,
∴,故答案為:.
15. 如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于A、B兩點(diǎn),C、D是半徑為1的上兩動(dòng)點(diǎn),且,P為弦的中點(diǎn).當(dāng)C、D兩點(diǎn)在圓上運(yùn)動(dòng)時(shí),面積的最大值是___________

【答案】3
【解析】作于Q,連接、、,如圖:

∵,,
∴,
∴為等腰直角三角形,
由得,
當(dāng)時(shí),;當(dāng)時(shí),
即點(diǎn),,
∴,
∴為等腰直角三角形,
∴,
∵,
∴是中線,
則,
由三角形三邊關(guān)系得:,
由題得,當(dāng)P、O、Q共線時(shí),此時(shí),最大,
∵P為中點(diǎn),∴,∴,
∴;
故答案為:3.
16. 如圖,拋物線的頂點(diǎn)的坐標(biāo)為,與軸的一個(gè)交點(diǎn)位于0和1之間,則以下結(jié)論:①;②;③若圖象經(jīng)過(guò)點(diǎn),則;④若關(guān)于的一元二次方程無(wú)實(shí)數(shù)根,則.其中正確結(jié)論是______(填序號(hào))
【答案】①③④
【解析】①∵拋物線的頂點(diǎn)的坐標(biāo)為,
∴,
∴,即,
由圖可知,拋物線開(kāi)口方向向下,即,
∴,
當(dāng)時(shí),,
∴,
故①正確,符合題意;
②∵直線是拋物線的對(duì)稱軸,
∴,
∴,

由圖象可得:當(dāng)時(shí),,
∴,
故②錯(cuò)誤,不符合題意;
③∵直線是拋物線的對(duì)稱軸,
設(shè)兩點(diǎn)橫坐標(biāo)與對(duì)稱軸的距離為,
則,,
∴,
根據(jù)圖象可得,距離對(duì)稱軸越近的點(diǎn)的函數(shù)值越大,
∴,
故③正確,符合題意;
④∵關(guān)于x的一元二次方程無(wú)實(shí)數(shù)根,
∴,
∴,


∵,
∴,
故④正確,符合題意.
故答案為:①③④
三、解答題(共7小題,共72分)
17. 已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求的取值范圍;
(2)當(dāng)時(shí),求出方程的解.
解:(1)關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,
,且,解得:且;
(2)當(dāng)時(shí),
原方程為,即,
移項(xiàng)得:,配方得:,即,
直接開(kāi)平方得:
解得:.
18. 將邊長(zhǎng)為2的正方形剪成四個(gè)全等的直角三角形,用這四個(gè)直角三角形拼成符合要求的四邊形,請(qǐng)?jiān)谙铝芯W(wǎng)格中畫(huà)出你拼成的四邊形(注:①網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1;②所拼的圖形不得與原圖形相同;③四邊形的各頂點(diǎn)都在格點(diǎn)上).

【答案】見(jiàn)解析(答案不唯一,符合題意即可)
【解析】①要求是軸對(duì)稱圖形但不是中心對(duì)稱圖形,則可作等腰梯形,如圖四邊形即為所求;
②要求是中心對(duì)稱圖形但不是軸對(duì)稱圖形,則可作一般平行四邊形,如圖四邊形即為所求;
③要求既是軸對(duì)稱圖形又是中心對(duì)稱圖形,則可作菱形、矩形等,如圖四邊形即為所求;
④要求既不是軸對(duì)稱圖形又不是中心對(duì)稱圖形,則考慮作任意四邊形,如圖四邊形即為所求.

19. 問(wèn)題情境:筒車是我國(guó)古代發(fā)明的一種水利灌溉工具,既經(jīng)濟(jì)又環(huán)保,明朝科學(xué)家徐光啟在《農(nóng)政全書(shū)》中用圖畫(huà)描繪了筒車的工作原理(如圖①).假定在水流量穩(wěn)定的情況下,筒車上的每一個(gè)盛水筒都按逆時(shí)針做勻速圓周運(yùn)動(dòng),每旋轉(zhuǎn)一周用時(shí)120秒.
問(wèn)題設(shè)置:把筒車抽象為一個(gè)半徑為r的.如圖②,始終垂直于水平面,設(shè)筒車半徑為2米.當(dāng)時(shí),某盛水筒恰好位于水面A處,此時(shí),經(jīng)過(guò)95秒后該盛水筒運(yùn)動(dòng)到點(diǎn)B處.(參考數(shù)據(jù),)

問(wèn)題解決:
(1)求該盛水筒從A處逆時(shí)針旋轉(zhuǎn)到B處時(shí),的度數(shù);
(2)求該盛水筒旋轉(zhuǎn)至B處時(shí),它到水面的距離.(結(jié)果精確到米)
解:(1)∵旋轉(zhuǎn)一周用時(shí)120秒,
∴每秒旋轉(zhuǎn),
當(dāng)經(jīng)過(guò)95秒后該盛水筒運(yùn)動(dòng)到點(diǎn)B處時(shí),,
∵,
∴;
(2)作于點(diǎn)C,設(shè)與水平面交于點(diǎn)D,則,

在中,,,
∴,,
在中,,,
∴,
∴(米),
答:該盛水筒旋轉(zhuǎn)至B處時(shí),它到水面的距離為米.
20. 如圖,老李想用長(zhǎng)為的柵欄,再借助房屋的外墻(外墻足夠長(zhǎng))圍成一個(gè)矩形羊圈,并在邊上留一個(gè)寬的門(建在處,另用其他材料).

(1)當(dāng)羊圈的長(zhǎng)和寬分別為多少米時(shí),能圍成一個(gè)面積為640的羊圈?
(2)羊圈的面積能達(dá)到嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說(shuō)明理由.
解:(1)設(shè)矩形的邊,則邊.
根據(jù)題意,得.
化簡(jiǎn),得.
解得,.
當(dāng)時(shí),;
當(dāng)時(shí),.
答:當(dāng)羊圈的長(zhǎng)為,寬為或長(zhǎng)為,寬為時(shí),能圍成一個(gè)面積為的羊圈.
(2)不能,理由如下:
由題意,得.
化簡(jiǎn),得.
∵,
∴一元二次方程沒(méi)有實(shí)數(shù)根.
∴羊圈的面積不能達(dá)到.
21. 如圖,平分,與相切于點(diǎn)A,延長(zhǎng)交于點(diǎn)C,過(guò)點(diǎn)O作,垂足為B.

(1)求證:是的切線;
(2)若的半徑為4,,求的長(zhǎng).
解:(1)∵與相切于點(diǎn)A,
∴,
∵平分,,
∴,
∴是的切線;
(2)∵的半徑為4,
∴,
∵,,
∴,,
∵,
∴,
∴,即,
∴.
22. 乒乓球被譽(yù)為中國(guó)國(guó)球.2023年的世界乒乓球錦標(biāo)賽中,中國(guó)隊(duì)包攬了五個(gè)項(xiàng)目的冠軍,成績(jī)的取得與平時(shí)的刻苦訓(xùn)練和精準(zhǔn)的技術(shù)分析是分不開(kāi)的.如圖,是乒乓球臺(tái)的截面示意圖,一位運(yùn)動(dòng)員從球臺(tái)邊緣正上方以擊球高度為的高度,將乒乓球向正前方擊打到對(duì)面球臺(tái),乒乓球的運(yùn)行路線近似是拋物線的一部分.
(1)乒乓球到球臺(tái)的豎直高度記為(單位:),乒乓球運(yùn)行的水平距離記為(單位:),測(cè)得如下數(shù)據(jù):
在平面直角坐標(biāo)系中,描出表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫(huà)出表示乒乓球運(yùn)行軌跡形狀的大致圖象;
(2)①當(dāng)乒乓球到達(dá)最高點(diǎn)時(shí),與球臺(tái)之間的距離是______,當(dāng)乒乓球落在對(duì)面球臺(tái)上時(shí),到起始點(diǎn)的水平距離是______;
②求滿足條件的拋物線解析式;
(3)技術(shù)分析:如果只上下調(diào)整擊球高度,乒乓球的運(yùn)行軌跡形狀不變,那么為了確保乒乓球既能過(guò)網(wǎng),又能落在對(duì)面球臺(tái)上,需要計(jì)算出的取值范圍,以利于有針對(duì)性的訓(xùn)練.如圖②,乒乓球臺(tái)長(zhǎng)為,球網(wǎng)高為.現(xiàn)在已經(jīng)計(jì)算出乒乓球恰好過(guò)網(wǎng)的擊球高度的值約為.請(qǐng)你計(jì)算出乒乓球恰好落在對(duì)面球臺(tái)邊緣點(diǎn)處時(shí),擊球高度的值(乒乓球大小忽略不計(jì)).
解:(1)描出各點(diǎn),畫(huà)出圖象如下:
(2)①觀察表格數(shù)據(jù),
可知當(dāng)和時(shí),函數(shù)值相等,
對(duì)稱軸為直線,
頂點(diǎn)坐標(biāo)為,
拋物線開(kāi)口向下,
最高點(diǎn)時(shí),乒乓球與球臺(tái)之間的距離是,
當(dāng)時(shí),,
乒乓球落在對(duì)面球臺(tái)上時(shí),到起始點(diǎn)的水平距離是;
故答案為:49;230;
②設(shè)拋物線解析式,
將代入得,,
解得:,
拋物線解析式為;
(3)當(dāng)時(shí),
拋物線的解析式為,
設(shè)乒乓球恰好落在對(duì)面球臺(tái)邊緣點(diǎn)處時(shí),擊球高度的值為,則平移距離為,
平移后的拋物線的解析式為,
當(dāng)時(shí),,
,
解得:;
答:乒乓球恰好落在對(duì)面球臺(tái)邊緣點(diǎn)處時(shí),擊球高度的值為.
23. 如圖①,小紅在學(xué)習(xí)了三角形相關(guān)知識(shí)后,對(duì)等腰直角三角形進(jìn)行了探究,在等腰直角三角形中,,過(guò)點(diǎn)作射線,垂足為,點(diǎn)在上.

(1)【動(dòng)手操作】
如圖②,若點(diǎn)在線段上,畫(huà)出射線,并將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與交于點(diǎn),根據(jù)題意在圖中畫(huà)出圖形,圖中的度數(shù)為_(kāi)______度;
(2)【問(wèn)題探究】
根據(jù)(1)所畫(huà)圖形,探究線段與的數(shù)量關(guān)系,并說(shuō)明理由;
(3)【拓展延伸】
如圖③,若點(diǎn)在射線上移動(dòng),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與交于點(diǎn),探究線段之間的數(shù)量關(guān)系,并說(shuō)明理由.
解:(1)如圖所示:

∵,∴,
∵,∴,
∴;
故答案為:135.
(2);理由如下:
連接,如圖所示:

根據(jù)旋轉(zhuǎn)可知,,
∵,
∴、P、B、E四點(diǎn)共圓,
∴,
∴,
∴,
∴.
(3)當(dāng)點(diǎn)P在線段上時(shí),連接,延長(zhǎng),作于點(diǎn)F,如圖所示:

根據(jù)解析(2)可知,,
∵,
∴,
∴,
∵,
∴,
∴,
∵,,
∴為等腰直角三角形,
∴,
∵為等腰直角三角形,
∴,
即;
當(dāng)點(diǎn)P在線段延長(zhǎng)線上時(shí),連接,作于點(diǎn)F,如圖所示:

根據(jù)旋轉(zhuǎn)可知,,
∵,
∴、B、P、E四點(diǎn)共圓,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∵,,
∴為等腰直角三角形,
∴,
即;
綜上分析可知,或.

相關(guān)試卷

2023~2024學(xué)年山東省臨沂市羅莊區(qū)八年級(jí)(上)期中數(shù)學(xué)試卷(解析版):

這是一份2023~2024學(xué)年山東省臨沂市羅莊區(qū)八年級(jí)(上)期中數(shù)學(xué)試卷(解析版),共23頁(yè)。

2023~2024學(xué)年山東省臨沂市蘭陵縣九年級(jí)(上)期中數(shù)學(xué)試卷(解析版):

這是一份2023~2024學(xué)年山東省臨沂市蘭陵縣九年級(jí)(上)期中數(shù)學(xué)試卷(解析版),共13頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023~2024學(xué)年山東省臨沂市蘭山區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版):

這是一份2023~2024學(xué)年山東省臨沂市蘭山區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版),共15頁(yè)。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2023~2024學(xué)年山東省臨沂市費(fèi)縣九年級(jí)(上)期中數(shù)學(xué)試卷(解析版)

2023~2024學(xué)年山東省臨沂市費(fèi)縣九年級(jí)(上)期中數(shù)學(xué)試卷(解析版)

山東省臨沂市羅莊區(qū)2023-2024學(xué)年九年級(jí)上冊(cè)期中數(shù)學(xué)試題(含解析)

山東省臨沂市羅莊區(qū)2023-2024學(xué)年九年級(jí)上冊(cè)期中數(shù)學(xué)試題(含解析)

2022-2023學(xué)年山東省臨沂市羅莊區(qū)七年級(jí)(下)期中數(shù)學(xué)試卷(含解析)

2022-2023學(xué)年山東省臨沂市羅莊區(qū)七年級(jí)(下)期中數(shù)學(xué)試卷(含解析)

2022-2023學(xué)年山東省臨沂市羅莊區(qū)九年級(jí)(下)期中數(shù)學(xué)試卷(含解析)

2022-2023學(xué)年山東省臨沂市羅莊區(qū)九年級(jí)(下)期中數(shù)學(xué)試卷(含解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部