
三年級(jí)思維訓(xùn)練20--豎式數(shù)字迷 1.下面算式中每個(gè)漢字各代表什么數(shù)字,算式才能成立, 奧 運(yùn) 年 奧 運(yùn) 年 奧 運(yùn) 年 + 奧 運(yùn) 年 2 0 0 8 奧= ;運(yùn)=____ ;年= 2. 在下邊的算式中,“三”、“好”、“學(xué)”、“生”四個(gè)漢字各代表一個(gè)阿拉伯?dāng)?shù)字,其中“三”代表 ,“好”代表 ,“學(xué)”代表 ,“生”代表 學(xué) 生 好 學(xué) 生 + 三 好 學(xué) 生 1 9 8 9 3.在下面的加法算式中,每個(gè)字母代表一個(gè)數(shù)字,相同的字母代表相同的數(shù)字,不同的字 母代表不同的數(shù)字,那么代表的四位數(shù)是 . A B + C A D E F F C 4. 下面豎式中,“學(xué)理科到學(xué)而思”的每一個(gè)漢字表示O~9這10個(gè)數(shù)字中的一個(gè),相同的漢字表示相同的數(shù)字,不同的漢字表示不同的數(shù)字,三位數(shù)“”的最小值是 。 學(xué) 理 科 到 2 0 1 1 學(xué) 而 思 5. 下面兩個(gè)算式中,相同的字母代表相同的數(shù)字,不同的字母代表不同的數(shù)字, 那么A+B+C+D+E+F+G____. A B C D D C B A + E F G + G F E 2 0 0 7 9 3 8 7 6.在下面算式的空格處,填上適當(dāng)?shù)臄?shù)使得豎式成立,則豎是的積是 3 口 口 × 7 口 3 口 5 7.在下面的算式中,不同的漢字代表不同的數(shù)字,則其中“太好了”= 好 好 × 好 太 好 了 8.數(shù)學(xué)大師陳省身先生生于1911年,有人用陳省身先生的名字組成了下面的算式,算式中相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字,那么“陳”+“省”+“身”= 陳 省 身 陳 省 身 + 省 身 1 9 1 1 9.下列算式中,a、b、c、d分別代表o~9的某個(gè)數(shù),相同的字母代ab同的數(shù)字,不同的字母代表不同的數(shù)字,如果四位數(shù),那么表三位數(shù),代表兩位數(shù),a代表一位數(shù).那么代表的數(shù)是多少? a a b a b c + a b c d 2 0 0 2 10 如下圖所示,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字.“美妙數(shù)學(xué)花園”代表的6位數(shù)最小為 2 0 0 7 美 妙 數(shù) 學(xué) + 花 園 好 好 好 好 11在下面的空格中填上適當(dāng)?shù)臄?shù). 12下圖所示的除法豎式中,不同的字母表示不同的數(shù)字,除法豎式的商是 13、 下邊乘法算式中的“來(lái)參加數(shù)學(xué)邀請(qǐng)賽”八個(gè)字,各代表一個(gè)不同的數(shù)字.其中“賽”代表 “來(lái)”代表____,“參”代表____,“加”代表____,“數(shù)”代表 ,“學(xué)”代表_ ,“邀”代表 ,“請(qǐng)”代表____. 來(lái)參加數(shù)學(xué)邀請(qǐng)賽 × 賽 來(lái)來(lái)來(lái)來(lái)來(lái)來(lái)來(lái)來(lái)來(lái) 14下面算式由1~9中的8個(gè)數(shù)字組成,相同的漢字表示相同的數(shù),不同的漢字表示不同的數(shù),那么“數(shù)學(xué)解題”與“能力”的差的最小值是____. 數(shù) 學(xué) 解 題 能 力 十 展 示 2 0 1 0 15下面這個(gè)乘式中,是一個(gè)四位數(shù),且P、Q、R及s分別為不同的數(shù)碼.則四位數(shù)是____ P Q R S × 9 S R Q P 16小明做一個(gè)乘法算式,列豎式如下圖所示,則正確的得數(shù)是 。 □ × □ □ □ □ □ □ □ □ 口 口 7 口 □ 17已知下面的除法算式,那么除數(shù)是 ,被除數(shù)是 . 18 在口中填人數(shù)字,完成下列的計(jì)算,則商是 . 三年級(jí)思維訓(xùn)練20--豎式數(shù)字迷 參考答案 1、 5;0;2 因?yàn)樗膫€(gè)“奧運(yùn)年”相加是2008,所以“奧運(yùn)年”=2008÷4=502. 2、 1;4;6;3 從豎式加法的個(gè)位數(shù)字考慮,“生”的3倍只能是9,所以“生”代表3;“學(xué)”的3倍只能等于18,所以“學(xué)”代表6;因此“好”的2倍只能等于8,所以“好”代表4,“三”代表1. 3、 1009 觀察算式的特點(diǎn),突破口在首位,可知道c=9,E=1,F(xiàn)=0,那么代表的四位 數(shù)是1009. 4、 294 百位不需要從千位借位,所以學(xué)=2,那么理只能等于3,且十位要從百位借位,那么 科=0或l,嘗試得最小為2305-2011=294. 5、 36 左面算式可知A=l,從右面算式可得E=6;如此繼續(xù)下去,考慮到進(jìn)位,可依次 得B=3,F=5,C=4,G=9,D=8. 1+3+4+8+6+5+9=36. 6、 2345 如下圖所示,三位數(shù)乘數(shù)個(gè)位和乘積的千位分別是5和2可以最先確定,然后根據(jù)所確4的數(shù)進(jìn)行局部計(jì)算和進(jìn)位.進(jìn)而得到三位數(shù)乘數(shù)的十位是3最后通過(guò)計(jì)算得到乘積的十位是4.因此,豎式的積是2345. 7、 891 “好”ד好好”是一個(gè)三位數(shù),則“好”必須大于3.通過(guò)試算,“好”=9,99×9=891.因此“太好了”=891. 8、 19 “身”乘以3的個(gè)位為1,所以“身”為7,進(jìn)位2;“省”乘以3再加2,個(gè)位為1,所以“省”為3,進(jìn)位1;“陳”乘以2加l為19,“陳”為9.所以“陳”+“省”+“身”=9+3+7=19. 9、 1803 從首位開(kāi)始依次向后推理.由于百位到千位之間必然發(fā)生進(jìn)位,所以a=1,而十位到百位之間也必定發(fā)生進(jìn)位.則b=8或者b=7.當(dāng)b=8時(shí),c=0,此時(shí)d=3,所以,代表的數(shù)是1803;當(dāng)b=7時(shí),要求十位向百位進(jìn)位2,即a,b,c的和加上個(gè)位的進(jìn)位等于20,c最大是9,那么至少需要個(gè)位向十位進(jìn)位3,即1+7+9+d=32,此時(shí)d=15,顯然不成立. 10、 348596 顯然“好”為2,要使算式成立則必有(美十?dāng)?shù)十花)≥20 要使“美妙數(shù)學(xué)花園”代表的6位數(shù)最小,則美十?dāng)?shù)十花=3+8+9,那么妙+學(xué)+園=15=4+5+6.即“美妙數(shù)學(xué)花園”代表的6位數(shù)最小為348596. 11、 除數(shù)= (20047-13)÷742=27.把除法算式補(bǔ)充完整即可,如上圖. 12、 142857 由于999999只能被一位數(shù)中的1,3,7,9整除,但999999除以1,3,9后所得的商都 是各位數(shù)字相同的多位數(shù),所以除數(shù)只能是7,商為999999÷7=142857. 13、 1,2,3,4,5,6,7 無(wú)8數(shù).根據(jù)“賽”= 9,推出“來(lái)”=1,乘積是111111111,111111111÷9=12345679. 14、 1747 方法一:為了讓“數(shù)學(xué)解題”與“能力”的差最小,應(yīng)該讓“數(shù)學(xué)解題,,盡量小,也就是讓“能力”和“展示”盡量大,其中較大的應(yīng)是“能力”,那么“數(shù)學(xué)解題,,最小應(yīng)該是一千八百多,“能”應(yīng)該是9,“展”應(yīng)該是7,于是“解題”+“力”+“示”=2010-1800-90- 70=50,所以“解”應(yīng)該是4,那么“題”+“力”+“示”=10,那么只能是2+3+5,為了“數(shù)學(xué)解題”與“能力”的差最小,讓“題”=2,“力”=5,于是“數(shù)學(xué)解題”-“能力”=1842-95=1747. 方法二:1~9的數(shù)字和為45,我們知道如果不發(fā)生進(jìn)位,和的數(shù)字之和應(yīng)該與所有加數(shù)的數(shù)字之和相等,每進(jìn)位一次減少9,和的數(shù)字和是3,那么可以推出加數(shù)的8個(gè)數(shù)字和應(yīng)為39,進(jìn)了4次位,所以8個(gè)數(shù)字不包括6,要想使“數(shù)學(xué)解題”和“能力”的差最小,“數(shù)學(xué)解題”應(yīng)最小,“能力”應(yīng)最大,那么可以推出“數(shù)學(xué)解題”是1842,“能力”是95,此時(shí)差為1842-95=1747. 15、 1089 根據(jù)題意P=1,否則乘積為五位數(shù),所以S=9,又因?yàn)镼×9不進(jìn)位,且P、Q、R及S分別為不同的數(shù)碼,所以Q=O,那么R×9的個(gè)位數(shù)字是10-8=2.所以R=8,因此四位數(shù) PQRS=1089. 注:1089X9=9801中,你是否發(fā)現(xiàn)1089乘以9的積9801與1089顛倒.事實(shí)上,乘上某個(gè)數(shù)等于與自己數(shù)字顛倒的四位數(shù),除1089外還有2178這個(gè)數(shù):2178×4=8712,還有一些更神奇的數(shù)! 10989×9=98901 109989×9=989901 1099989×9=9899901 10999989×9=98999901 …… 2178×4 -8712 21978×4=87912 219978×4 -879912 2199978×4 -8799912 21999978×4 -87999912 …… 16、 10791 如圖,用字母表示豎式中的各個(gè)數(shù)字,則顯然d=0,i=9,k=l,l=0,而且f+j=17,這表明f=8、j=9或者f=9、j=8,但事實(shí)上,因?yàn)閒是×e所得結(jié)果的百位數(shù)字,因此不 可能等于9,這樣只有f=8、j=9,=99.考慮到×e、×c的結(jié)果可知只有=99,=109,正確的得數(shù)為10791. 17、 12;117684 根據(jù)除法豎式錯(cuò)位情況可以知道商的十位數(shù)字是0;因?yàn)槌龜?shù)×8是一個(gè)兩位數(shù),除數(shù)乘以商的千位數(shù)字是一個(gè)三位數(shù),可知商的千位數(shù)字是9,并且除數(shù)只能等于12,因此被除數(shù)是9807×12=117684. 18、 193 根據(jù)商的百位數(shù)字與除數(shù)相乘結(jié)果百位數(shù)字是1,所以商和除數(shù)的百位數(shù)字都是 1;豎式中的534是商的個(gè)位數(shù)字與除數(shù)的乘積,且除數(shù)的百位數(shù)字是1,所以只有534=178×3,所以商的個(gè)位數(shù)字是3,又因?yàn)樯痰氖粩?shù)字乘178的積的個(gè)位數(shù)字是2.所以商的十位數(shù)字只能是9或4,但4×178=712不是四位數(shù),所以商只能是193.
微信掃碼,快速注冊(cè)
注冊(cè)成功