§13.3 絕對值不等式考試要求 1.理解絕對值的幾何意義,并了解下列不等式成立的幾何意義及取等號的條件:|ab||a||b|(a,bR)|ac||ab||bc|(a,b,cR).2.會利用絕對值的幾何意義求解以下類型的不等式:|axb|c,|axb|c;|xa||xb|c|xa||xb|c.知識梳理1.絕對值不等式的解法(1)含絕對值的不等式|x|<a|x|>a的解集不等式a>0a0a<0|x|<a ??|x|>a(,-a)(a,+)(0)(0,+)R (2)|axb|c(c>0)|axb|c(c>0)型不等式的解法|axb|c?________________________.|axb|c?________________________.(3)|xa||xb|c(c>0)|xa||xb|c(c>0)型不等式的解法利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想.利用零點(diǎn)分段法求解,體現(xiàn)了分類討論的思想.通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.2.含有絕對值的不等式的性質(zhì)(1)如果ab是實(shí)數(shù),則________|a±b|________.(2)如果a,b,c是實(shí)數(shù),那么______________,當(dāng)且僅當(dāng)________________時(shí),等號成立.思考辨析判斷下列結(jié)論是否正確(請?jiān)诶ㄌ栔写?/span>“√”“×”)(1)|x|>c的解集為R,則c0.(  )(2)不等式|x1||x2|<2的解集為?.(  )(3)|ab||a||b|當(dāng)且僅當(dāng)a>b>0時(shí)等號成立.(  )(4)|ab||a||b|當(dāng)且僅當(dāng)ab0時(shí)等號成立.(  )教材改編題1.不等式3|52x|<9的解集為(  )A[2,1)[4,7)   B(2,1](4,7]C(2,-1][4,7)   D(2,1][4,7)2.不等式|x1||x5|<2的解集為________3.設(shè)abR,|ab|>2,則關(guān)于實(shí)數(shù)x的不等式|xa||xb|>2的解集是________題型一 絕對值不等式的解法1 (2021·全國乙卷)已知函數(shù)f(x)|xa||x3|.(1)當(dāng)a1時(shí),求不等式f(x)6的解集;(2)f(x)>a,求a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 解絕對值不等式的基本方法(1)利用絕對值的定義,通過分類討論轉(zhuǎn)化為解不含絕對值符號的普通不等式.(2)當(dāng)不等式兩端均為正數(shù)時(shí),可通過兩邊平方的方法,轉(zhuǎn)化為不含絕對值符號的普通不等式.(3)利用絕對值的幾何意義,數(shù)形結(jié)合求解.跟蹤訓(xùn)練1 已知函數(shù)f(x).(1)畫出函數(shù)yf(x)的圖象;(2)解不等式1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________題型二 利用絕對值不等式的性質(zhì)求最值2 已知函數(shù)f(x)|2x1||x4|.(1)解不等式f(x)6;(2)若不等式f(x)|x4|<a28a有解,求實(shí)數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 求含絕對值函數(shù)的最值時(shí),常用的方法有三種(1)利用絕對值的幾何意義.(2)利用絕對值的三角不等式,即|a||b||a±b|||a||b||.(3)利用零點(diǎn)分段法,轉(zhuǎn)化為分段函數(shù)求最值.跟蹤訓(xùn)練2 已知函數(shù)f(x)mR.(1)m3,求不等式f(x)>1的解集;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若對?xR,不等式f(x)24都成立,求實(shí)數(shù)m的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 題型三 絕對值不等式的綜合應(yīng)用3 設(shè)函數(shù)f(x)|2x1||x1|.(1)畫出yf(x)的圖象;(2)當(dāng)x[0,+)時(shí),f(x)axb,求ab的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思維升華 (1)解決與絕對值有關(guān)的綜合問題的關(guān)鍵是去掉絕對值,化為分段函數(shù).(2)數(shù)形結(jié)合是解決與絕對值有關(guān)的綜合問題的常用方法.跟蹤訓(xùn)練3 (2023·成都聯(lián)考)已知函數(shù)f(x)|x2|a|x1|.(1)當(dāng)a1時(shí),求不等式f(x)<x的解集;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)當(dāng)a2時(shí),若關(guān)于x的不等式f(x)>m1恰有2個(gè)整數(shù)解,求實(shí)數(shù)m的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

相關(guān)試卷

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.3 絕對值不等式:

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.3 絕對值不等式,共3頁。

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.1 坐標(biāo)系:

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.1 坐標(biāo)系,共4頁。試卷主要包含了在極坐標(biāo)系下,已知圓C等內(nèi)容,歡迎下載使用。

2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.2 參數(shù)方程:

這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十三章 §13.2 參數(shù)方程,共4頁。

英語朗讀寶

相關(guān)試卷 更多

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
  • 所屬專輯70份
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部